ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ» (МИИТ)

Кафедра: «Теоретическая и прикладная механика»

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА

Задание на контрольную работу №1 с методическими указаниями по дисциплине для студентов-бакалавров 3 курса направления: «Управление в технических системах»

профиля: «Системы и технические средства автоматизации и управления»

ОБШИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ

Целью контрольной работы **является формирование** у обучающихся **профессиональных компетенций и приобретение** обучающимися:

знаний о теоретических основах механики, методах составления и исследования уравнений статики, кинематики и динамики;

умений составлять и рассчитывать механическую систему по уравнениям статики, кинематики и динамики;

навыков владения принципами и методами моделирования, анализа, синтеза и оптимизации систем.

Задание на контрольную работу по дисциплине «Теоретическая механика» включает в себя 3 раздела: статика, кинематика, динамика.

В контрольной работе студент должен:

Раздел. Статика

- построить исходный рисунок и записать числовые значения величин;
- освободить конструкцию от связей, заменить их реакциями связей;
- составить уравнения равновесия и решить их;
- проанализировать результат.

Раздел. Кинематика

- построить механизм в масштабе;
- вычислить и построить скорости точек.

Раздел. Динамика

- выбрать метод решения задачи;
- сделать рисунок и показать все силы действующие на тело;
- показать известные скорости и ускорения точек тела;
- составить уравнение теоремы или принципа и решить.

Контрольную работу следует оформлять в соответствии с требованиями ЕСКД. Текстовая часть курсовой работы выполняется с использованием ЭВМ, и только рисунки можно делать карандашом. Работа должна содержать оглавление, текст самой работы и список используемой литературы. Текст работы должен начинаться с задания, сопровождаемого исходными данными в соответствии с выбранным вариантом, а затем последовательно излагается расчетная часть.

Решение каждой задачи должно сопровождаться краткими пояснениями. Следует указать, какие теоремы, принципы и формулы использованы для решения задачи. Все промежуточные преобразования, расчеты должны быть показаны в решении и сопровождены необходимыми пояснениями. Все уравнения и формулы следует записывать сначала в общем виде, а затем подставлять вместо буквенных обозначений их числовые значения. Вычисления должны быть доведены до получения окончательного результата. В конце решения необходимо привести ответы. Обязательно указывать размерность искомых величин.

В настоящих заданиях приводится 20 вариантов для каждой задачи.

Номер варианта для всех задач курсовой работы выбирается студентом по двум последним цифрам его учебного шифра (табл. 1).

Таблина 1

Предпоследняя	Последняя	Иомор роруация	Предпоследняя	Последняя	Цомор рарианта	
цифра шифра		Номер варианта	цифра шифра		Номер варианта	
0;1;2;3;4	0	1		0	11	
	1	2		1	12	
	2	3		2	13	
	3	4	5;6;7;8;9	3	14	
	4	5		4	15	
	5	6		5	16	
	6	7		6	17	
	7	8		7	18	
	8	9		8	19	
	9	10		9	20	

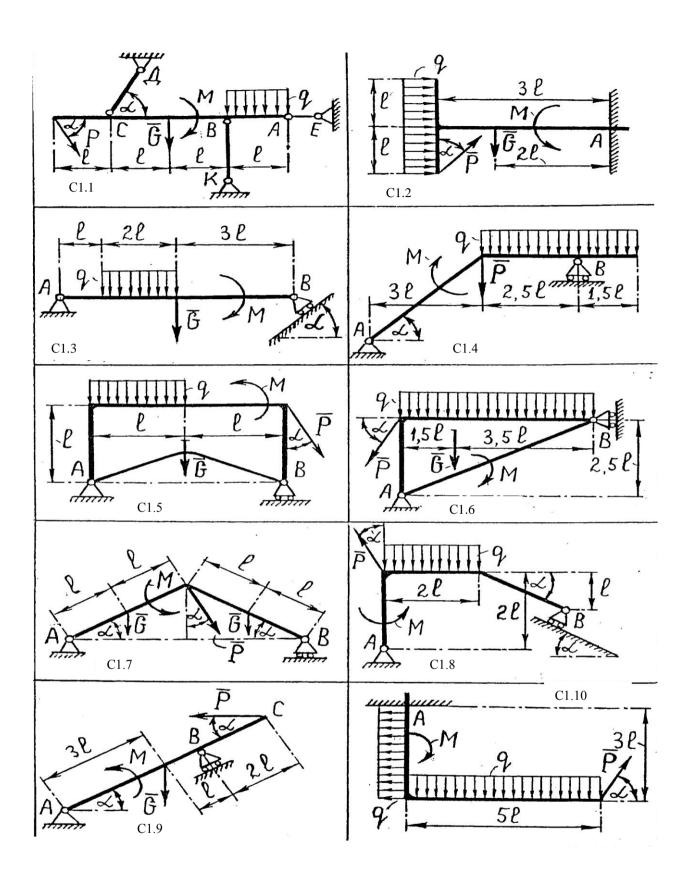
Например, шифрам с последними цифрами 51, 41, и 77 соответствуют варианты 12, 2 и 18.

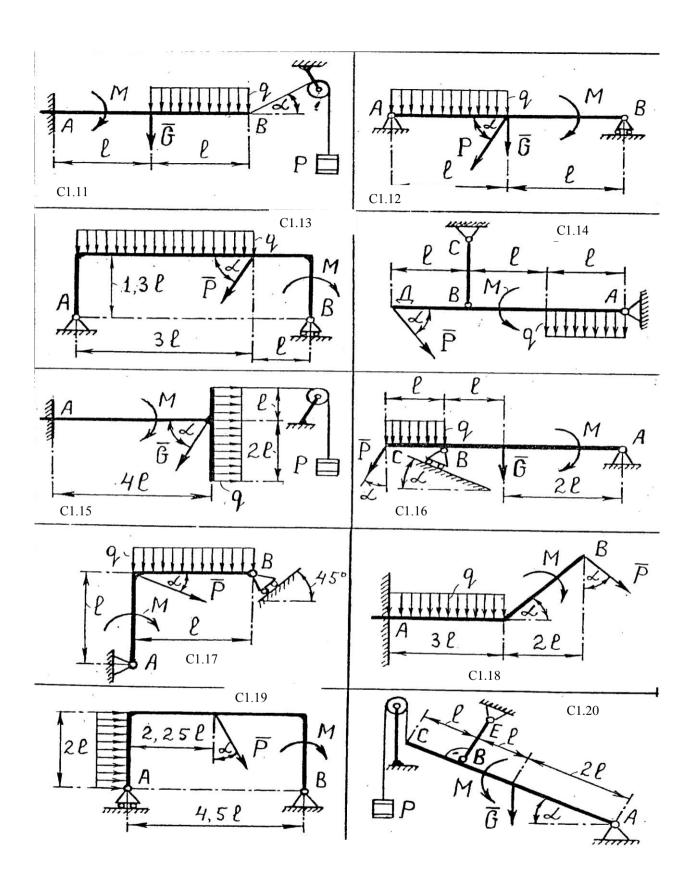
Задача С1 ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ

Определить реакции связей заданной плоской конструкции. Схемы конструкций указаны на рисунках C1.1 - C1.20, исходные данные приведены в таблице 2.

Таблица 2

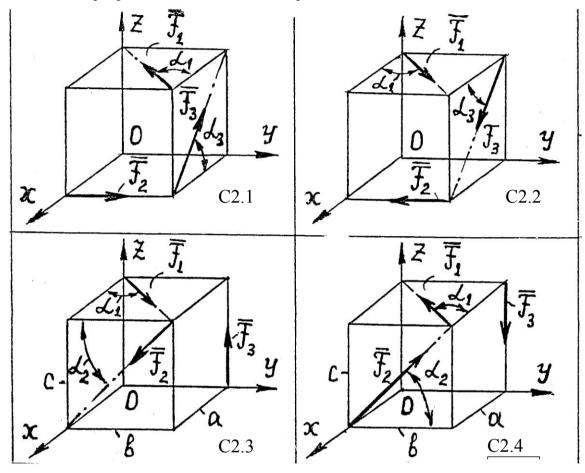
Номер варианта	Р,кН	G,кН	М,кНм	q,кН/м	l,M	α,град.
C1.1	4	12	4	3	1	60°
C1.2	10	6	5	2	1,5	45°
C1.3	-	10	4	3	1	45°
C1.4	15	-	3	4	1	45°
C1.5	10	8	5	2	2	30°
C1.6	6	9	3	5	2	60°
C1.7	20	14	4	-	1	30°
C1.8	14	-	6	2	1	30°
C1.9	10	15	6	-	1	30°
C1.10	16	-	10	3	1	60°
C1.11	10	8	6	2	2	30°
C1.12	15	12	8	1	1,5	60°
C1.13	8	-	3	6	1	60°
C1.14	10	-	4	2	1	45°
C1.15	20	12	3	4	1	60°
C1.16	15	5	2	3	1	30°
C1.17	12	6	8	3	2	30°
C1.18	8	-	3	2	1	45°
C1.19	20	-	4	6	1	30°
C1.20	15	10	5	-	1	30°

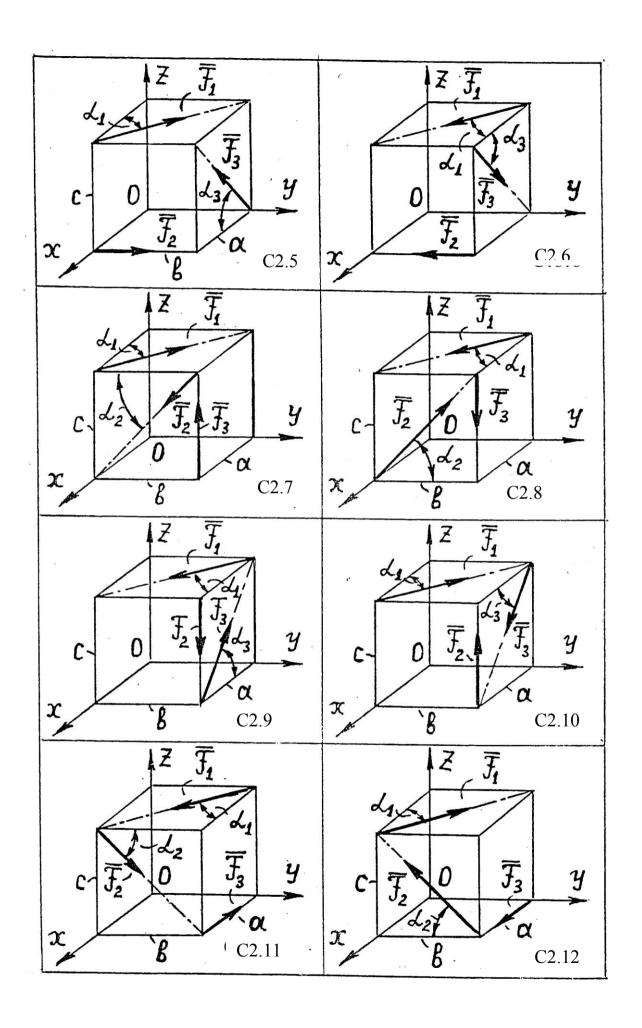


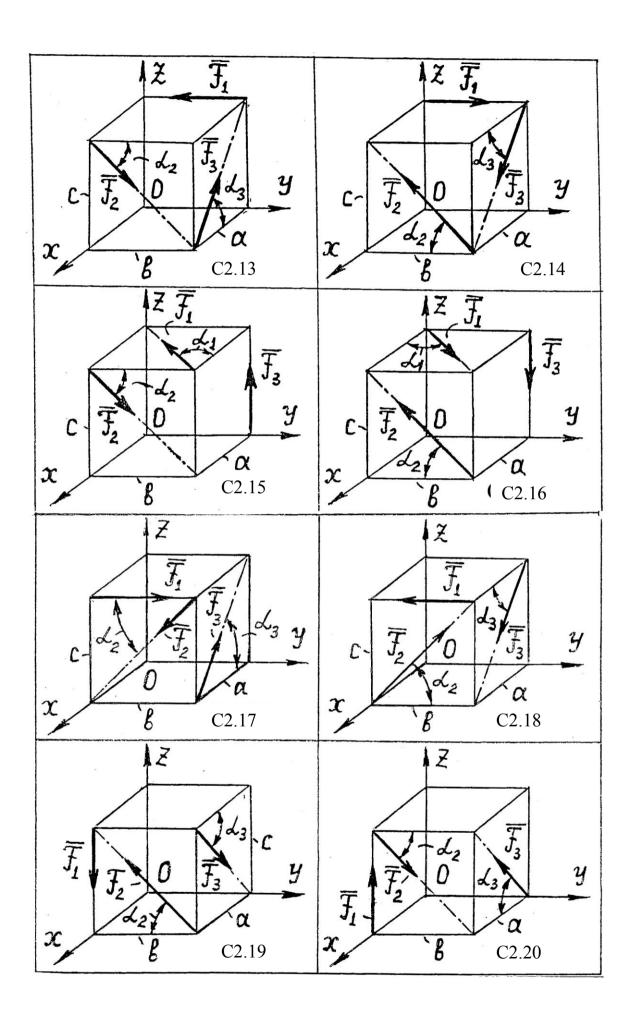


Задача С2 ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК ДЕЙСТВИЯ ПРОСТРАНСТВЕННОЙ СИСТЕМЫ СИЛ

Определить модули главного вектора и главного момента относительно центра О пространственной системы сил (${\bf F_1}$, ${\bf F_2}$, ${\bf F_3}$). Силы приложены к вершинам прямоугольного параллелепипеда с ребрами a=1 м, b=c=3м, причем $F_1=2$ кH, $F_2=3$ кH, $F_3=5$ кH.

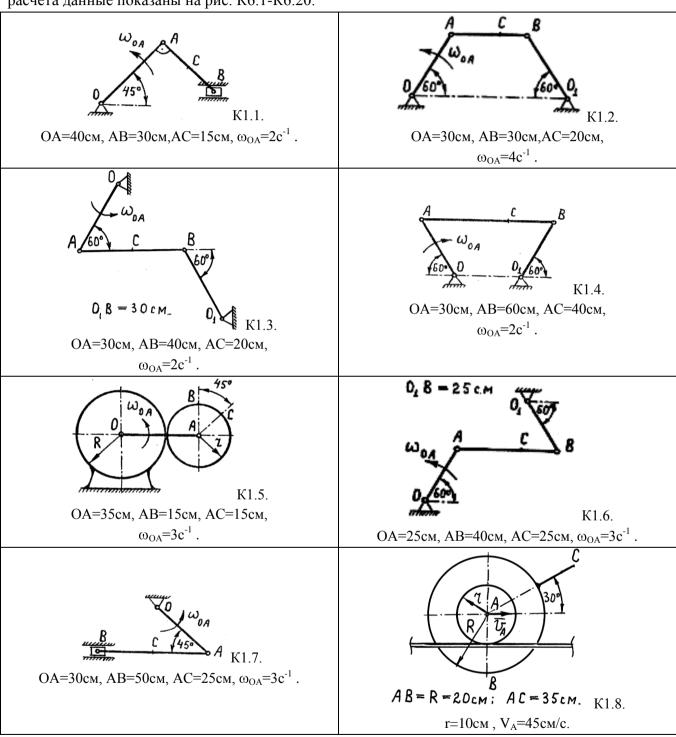


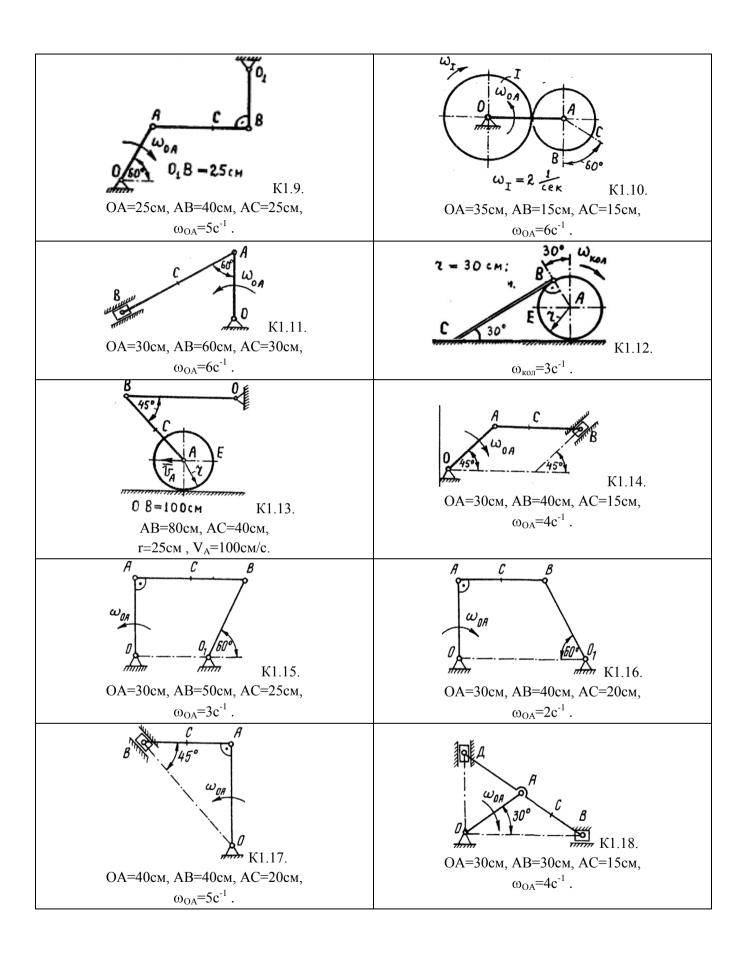


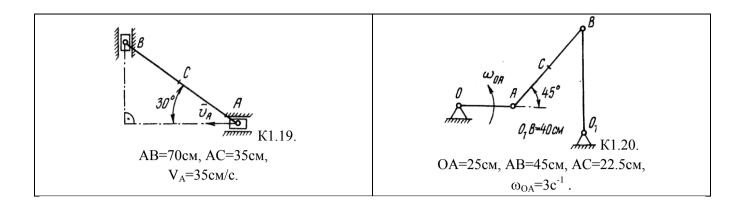


Задача К1 ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА

Для заданного положения механизма найти скорости точек В и С, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис. К6.1-К6.20.







Задача Д1 ПЕРВАЯ ЗАДАЧА ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ

Д1.1 . Гиря массы m = 0,2 кг подвешена к	Д1.2. Груз, привязанный к нити длиной l , движется по		
	1 1 1 1		
нити длиной $l=1$ <i>м</i> , вследствие толчка гиря	окружности в вертикальной плоскости. Какую		
получила горизонтальную скорость	минимальную скорость в наивыешем положении должен		
V = 3 м/c. Определить натяжение нити	иметь груз, чтобы нить оставалась натянутой?		
непосредственно после толчка.			
Д1.3. Определить модуль равнодействующей	Д1.4 . Вагон массой $m=9000$ кг скатывается с горки .		
сил, действующих на материальную точку	Какой угол к горизонту должна иметь горка, для того		
массой $m=3$ кг в момент времени $t=6$ с, если	чтобы вагон двигался с ускорением $a = 3 \text{ м/c}^2$? Угол		
она движется по оси Ох согласно уравнению	выразить в градусах.		
$x=0.4t^3+21t.$			
Д1.5. Точка массой $m = 4 \ \kappa z$ движется по	Д1.6 . Груз массы $m = 0,1$ кг, подвешенный на нити		
горизонтальной прямой с ускорением	длиной $l = 0,4 m$ в неподвижной точке O, представляет		
a = 0,3t. Определить модуль силы,	собой конический маятник, то есть описывает		
действующей на точку в направлении ее	окружность в горизонтальной плоскости, причём нить		
движения в момент времени $t = 3 c$.	составляет с вертикалью угол α = 30°. Определить		
	скорость груза и натяжение нити.		
Д1.7. Автомобиль массы $m = 1500 \ \kappa z$	Д1.8 . Локомотив, двигаясь с ускорением $a = 1 \text{ m/c}^2$ по		
движется по вогнутому, участку дороги со	горизонтальному участку пути, перемещает вагоны		
скоростью $V = 10$ м/с. Радиус кривизны в	массой 60000 кг. Определить силу в автосцепке, если		
нижней точке дороги $\rho = 60 \text{м}$. Определить	сила сопротивления движению состава равна		
силу давления автомобиля на дорогу в	$F_{c} = 0.002$ mg.		
момент прохождения этого участка дороги.			
Д1.9 . Тело массой $m = 4 \kappa z$ движется по	Д1.10. Искусственный спутник Земли описывает		
горизонтальной прямой со скоростью	круговую орбиту радиуса R на небольшой высоте над		
$V = 0.9t^2 + 2t$. Определить модуль силы,	поверхностью Земли (изменением силы тяжести на этой		
действующей на точку в направлении ее	высоте по сравнению с силой тяжести на поверхности		
движения в момент времени $t = 3$ с.	Земли можно пренебречь). Определить скорость		
Abhacima B Moment Bpemeini i 3 c.	движения спутника по орбите и время одного оборота		
	спутника. Радиус Земли <i>R</i> = 6380 км.		
Д1.11. Материальная точка массой m=2 кг	Д1.12 . Материальная точка массой $m=100$ кг движется в		
движется по окружности радиуса R = 0,6 м	плоскости Oxy согласно уравнениям $x = at^2$, $y = bt$, где		
согласно уравнению $S = 2,4t^2$. Определить	$a=10 \ u \ b=100$ - постоянные. Определить модуль		
модуль равнодействующей сил,	равнодействующей сил, приложенных к точке.		
	равнодействующей сил, приложенных к точке.		
приложенных к материальной точке. Д1.13. Груз массы m = 100 кг, подвешенный	Д1.14 . Материальная точка массой $m = 16 \ \kappa z$ движется		
к концу намотанного на барабан троса,	по окружности радиуса $R = 9 \text{ м}$ со скоростью $V=3 \text{ м/c}$.		
· · · · · · · · · · · · · · · · · · ·			
движется с ускорением $a = 0.2 g$. Определить	Определить проекцию равнодействующей сил,		
натяжение троса при подъёме и опускании	приложенных к точке, на главную нормаль к		
груза.	траектории.		
Д1.15 . Материальная точка массой $m=9$ кг	Д1.16 .Движение материальной точки массой $m = 8 \ \kappa z$		
движется в горизонтальной плоскости Оху с	происходит в горизонтальной плоскости Оху согласно		
ускорением $a=4\overline{i}+3\overline{j}$. Определить	уравнениям $x = 5t$ u $y = t^3$. Определить модуль		
модуль силы, действующей на нее в	равнодействующей приложенных к точке сил в момент		
плоскости движения.	времени $t = 4$ с.		
\Box 1.17. Автомобиль массы $m = 1500 \ \kappa z$	Д1.18. Решето рудообогатительного грохота совершает		
$A_{1.17}$. ABTOMOONJIB MACCEI $M = 1500 \text{ KZ}$	дт.то. гешето рудоооогатительного грохота совершает		

движется по выпуклому участку дороги со	вертикальные гармонические колебания с амплитудой		
скоростью $V = 10 \ \text{м/c}$. Радиус кривизны в	b=5 c m . Найти наименьшую частоту k колебаний		
верхней точке дороги $\rho = 60 \text{ m}$. Определить	решета, при котором куски руды, лежащие на нём,		
силу давления автомобиля на дорогу в	отделяются от него и подбрасываются вверх.		
момент прохождения этого участка дороги.			
Д1.19. Материальная точка массы m	Д1.20 . Определить давление человека массой $\mathbf{m} = 80$ кг		
движется в плоскости согласно уравнениям	на площадку лифта в начале подъёма и перед		
$x = a \cos \omega t$; $y = b \sin \omega t$. Найти силу,	остановкой; ускорение (замедление) лифта $\mathbf{a} = \mathbf{0.2g}$.		
действующую на точку.			

Задача Д2 ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ

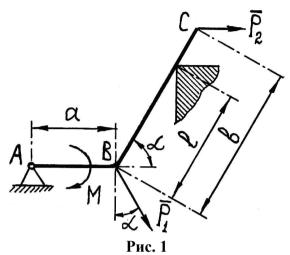
- **Д2.1**. Вагон массой m ударяет в пружинный амортизатор жёсткостью c, имея в момент начала удара скорость V_0 . Определить максимальную деформацию пружины амортизатора, пренебрегая её массой и полагая её недеформированной перед ударом.
- **Д2.2**. Маховое колесо радиуса R и веса P вращается вокруг своей оси с угловой скоростью ω . Колесо останавливают с помощью тормозной колодки силой P, линия действия которой проходит через ось маховика перпендикулярно этой оси. Найти коэффициент трения между тормозной колодкой и ободом колеса, если оно до остановки сделало N оборотов. Трением в подшипниках пренебречь.
- **Д2.3**. Барабан массой m и радиусом r приводится во вращательное движение из состояния покоя моментом M. Определить ускорение поднимаемого с помощью троса груза массой m_1 . Барабан считать однородным цилиндром, массой троса пренебречь.
- **Д2.4**. Транспортёр приводится в движение из состояния покоя моментом M, приложенным к нижнему шкиву. Определить ускорение груза массой m, если шкивы A и B радиусом r и массой m_1 каждый представляют собой однородные круглые цилиндры. Лента транспортёра, массой которой следует пренебречь, образует с горизонтом угол α . Скольжение ленты по шкивам и груза по ленте отсутствует.
- **Д2.5**. Тележка начинает движение из состояния покоя под действием момента M, приложенного к передним колёсам. Масса тележки без колёс равна m_1 масса каждого из четырёх колёс радиусом r равна m_2 , коэффициент трения качения δ Определить ускорение тележки, считая колёса однородными дисками.
- **Д2.6**. Тележка начинает движение без скольжения из состояния покоя под действием горизонтальной силы P. Масса тележки без колёс равна m_1 масса каждого из четырёх колёс радиусом г равна m_2 , коэффициент трения качения δ . Определить скорость тележки, считая колеса однородными дисками.
- **Д2.7**. Чему равна кинетическая энергия зубчатой передачи двух цилиндрических колес с числом зубьев $z_2 = 2z_1$, если их момент инерции относительно осей вращения $I_2 = 2 I_1 = 6 \kappa z M^2$, а угловая скорость колеса 1 равна $\omega_1 = 10 \ pad/c$.
- **Д2.8**. На горизонтальный вал диаметром d насажен маховик диаметром D делающий n [об/мин]. Определить коэффициент трения скольжения между валом и подшипниками, если после выключения привода маховик сделал N оборотов до остановки. Массу маховика считать равномерно распределённой по его ободу. Массой вала пренебречь.
- **Д2.9**. Шар весом P, лежащий на пружине с коэффициентом жёсткости c, вызывает статическую осадку пружины 0.025 m. Какова будет осадка пружины, если тот же шар упадёт на пружину с высоты h = 0.1 m. Массой пружины пренебречь.
- **Д2.10**. Оси колеса радиусом r, находящемуся на горизонтальной плоскости, сообщили скорость V_0 . Коэффициент трения качения равен δ . Определить путь, пройденный колесом до остановки. Качение колеса происходит без скольжения. Колесо считать однородным диском.
- **Д2.11**. Однородный диск массой m = 30 кг радиуса R = 1 м начинает вращаться из состояния покоя равноускорено с постоянным угловым ускорением $\varepsilon = 2pad/c^2$. Определить кинетическую энергию диска в момент времени t = 2c после начала движения.
- **Д2.12**. Снаряд массой m вылетает из ствола орудия со скоростью V_0 . Длина ствола орудия l. Найти силу среднего давления газов на снаряд.

- **Д2.13**. Какую начальную скорость, параллельную линии наибольшего ската наклонной плоскости, надо сообщить оси колеса радиуса R для того, чтобы оно, катясь без скольжения, поднялось на высоту H по наклонной плоскости, образующей угол α с горизонтом? Коэффициент трения качения равен δ . Колесо считать однородным диском.
- **Д2.14**. Стержень длиной l подвешен на шарнире О. Какую скорость надо сообщить нижнему концу стержня, чтобы он поднялся до горизонтального положения?
- **Д2.15**. Однородная цепочка длиной l лежит на гладком горизонтальном столе, и часть её свешивается. Предоставленная самой себе, цепочка соскальзывает со стола. Найти скорость цепочки в тот момент, когда она вся сойдёт со стола, если в начальный момент длина свешивающейся части незначительна.
- **Д2.16**. Лыжник скатывается с горки. Длина горки l, угол наклона горки с горизонтом α , коэффициент трения между лыжами и снегом f. Найти расстояние, пройденное лыжником на горизонтальном участке до остановки.
- **Д2.17**. Какую скорость приобрёл бы камень при падении без начальной скорости с высоты *H*, если бы не было сопротивления воздуха?
- **Д2.18**. Груз массой m подвешен к недеформированной пружине жёсткостью c и отпущен без начальной скорости. Найти наибольшее расстояние, на которое опустится груз.
- **Д2.19**. Шар весом P, лежащий на пружине с коэффициентом жёсткости c, вызывает статическую осадку пружины $0.025 \, m$. Какова будет осадка пружины, если тот же шар упадёт на пружину с высоты $h = 0.1 \, m$. Массой пружины пренебречь.
- **Д2.20**. Пружина имеет в ненапряжённом состоянии длину **20 см.** Сила, необходимая для изменения её длины на **0,01 м**, равна **1,96 H**. С какой скоростью **V** вылетит из трубки шарик массой **0,03 кг**, если пружина была сжата до длины **0,1 м**. Трубка с пружиной расположена горизонтально.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ ЗАДАЧ

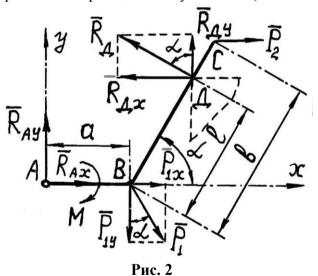
Задача 1 (рис. 1, рис. 2)

Найти реакции связей изогнутой балки ABC, находящейся под действием плоской системы сил . Вычисление реакций выполнить при a=1,2 м, b=2,4 м, l=1,8 м, $\alpha=30^{\circ}$, $P_1=8$ кH, $P_1=6$ кH, M=8 кHм.



Решение

Освободим балку от связей и приложим к ней реакции связей. На рис.2 \vec{R}_{Ax} , R_{Ay} — составляющие реакции шарнира А. $\vec{R}_{\mathcal{A}}$ — реакция выступа стены ($\vec{R}_{\mathcal{A}} \perp BC$).



Разложим силы \vec{P}_1 и $\vec{R}_{\mathcal{I}}$ на составляющие вдоль осей координат $\vec{P}_1 = \vec{P}_{1x} + \vec{P}_{1y};$ $\vec{R}_{\mathcal{I}} = \vec{R}_{\mathcal{I}x} + \vec{R}_{\mathcal{I}y}$

Условия равновесия балки имеют вид

$$\sum F_{kx} = 0; \qquad R_{Ax} + P_1 \sin \alpha - R_{\mathcal{A}} \sin 2\alpha + P_2 = 0;$$

$$\sum F_{\kappa y} = 0; \qquad R_{Ay} - P_1 \cos \alpha + R_{\mathcal{A}} \cos 2\alpha = 0;$$

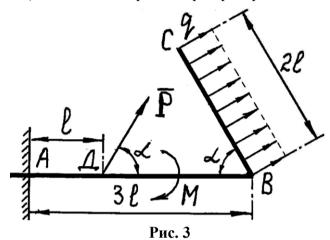
$$\sum m_A(F_k) = 0; \qquad -P_2 b \sin 2\alpha + (R_{\mathcal{A}} \sin 2\alpha) l \sin 2\alpha + (R_{\mathcal{A}} \cos 2\alpha) (a + l \cos 2\alpha) - (P_1 \cos \alpha) a - M = 0$$

После решения составленной системы уравнений получаем

$$R_{Ax} = -1.04 \kappa H$$
, $R_{Ay} = 1.27 \kappa H$, $R_{Ay} = 10.34 \kappa H$

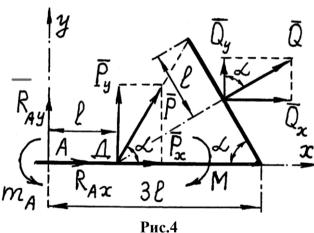
Задача 2 (рис. 3, рис. 4)

Определить реакции изогнутой балки ABC, находящейся под действием плоской системы сил. Вычисление реакций выполнить при l=1 м, $\alpha=60^{\circ}$, P=20 кH, M=25 кНм (момент пары сил), q=3 кН/м (интенсивность равномерно распределенной нагрузки).



Решение:

Освободим балку от связей и приложим к ней реакции связей. На рис. 4 \bar{R}_{Ax} и \bar{R}_{Ay} – составляющие реакции заделки вдоль осей координат, m_A – момент заделки (момент пары сил).



Заменим равномерно-распределенную нагрузку на участке BC равнодействующей силой \vec{Q} , причем $Q=q\times 2l=6\kappa H$.

Разложим силы $\vec{P}_{\ \ \text{H}}$ $\vec{Q}_{\ \ \text{на}}$ составляющие вдоль осей координат

$$\vec{Q} = \vec{Q}_x + \vec{Q}_y; \qquad \vec{P} = \vec{P}_x + \vec{P}_y$$

Составим уравнения равновесия балки

$$\sum F_{kx} = 0; R_{Ax} + P\cos\alpha + Q\sin\alpha = 0;$$

$$\sum F_{ky} = 0; R_{Ay} + P\sin\alpha + Q\cos\alpha = 0;$$

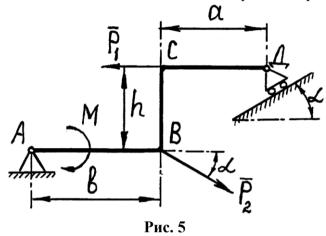
$$\sum m_{\mathcal{I}}(F_k) = 0;$$
 $m_A - M - R_{Ay}l = 0$

Из этой системы уравнений находим

$$R_{Ax} = 15.2\kappa H$$
, $R_{Ay} = -20.32\kappa H$, $R_{Ay} = 4.68\kappa H M$

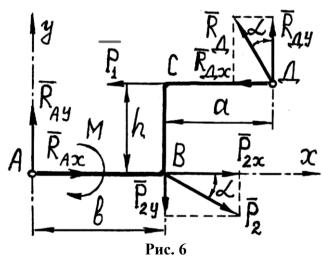
Задача 3 (рис. 5, рис. 6)

К изогнутой балке АВСД приложены силы $P_1 = 5 \ \kappa H$, $P_2 = 4 \ \kappa H$ и пара сил с моментом $M = 8 \ \kappa H M$. Размеры $a = 1.5 \ M$, $a = 1.8 \ M$, $a = 1.2 \ M$, $a = 30^\circ$. Определить реакции балки.



Решение (рис. 6)

Освободим балку от связей, приложим к ней реакции связей. На рис.6 \bar{R}_{Ax} , R_{Ay} — составляющие реакции шарнира A, $\bar{R}_{\mathcal{I}}$ — реакция подвижного шарнира Д. Заметим, что реакция $\bar{R}_{\mathcal{I}}$ направлена перпендикулярно плоскости, по которой могут перемещаться катки тележки шарнира Д.



Разложим силы \vec{P}_1 и $\vec{R}_{\mathcal{I}}$ на составляющие вдоль осей координат:

$$\vec{P}_1 = \vec{P}_{1x} + \vec{P}_{1y}; \qquad \vec{R}_{\mathcal{A}} = \vec{R}_{\mathcal{A}x} + \vec{R}_{\mathcal{A}y}$$

Составим уравнения равновесия балки:

$$\sum F_{kx} = 0; \qquad R_{Ax} - P_1 + P_2 \cos \alpha - R_{\mathcal{A}} \sin \alpha = 0;$$

$$\sum F_{\kappa y} = 0; \qquad R_{Ay} - P_2 \sin \alpha + R_{\mathcal{A}} \cos \alpha = 0;$$

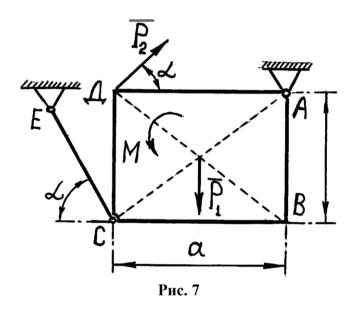
$$\sum m_A(F_k) = 0; \qquad (R_{\mathcal{A}}\cos\alpha)(a+b) + (R_{\mathcal{A}}\sin\alpha)h - (P_2\sin\alpha)b + P_1h - M = 0$$

Решаем эту систему уравнений и находим неизвестные величины:

$$R_{Ax} = 2.34\kappa H$$
, $R_{Ay} = 0.6\kappa H$, $R_{II} = 1.62\kappa H$

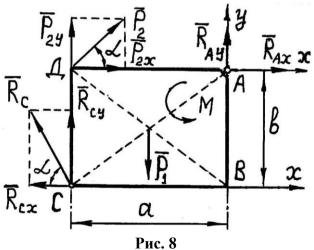
Задача 4 (рис. 7, рис. 8)

Определить реакции связей плиты АВСД, находящейся под действием плоской системы сил. Невесомый стержень СЕ образует угол α с горизонталью. Вычисление реакций выполнить при заданных размерах a=1.6 м, b=1.2 м, h=1.2 м, $\alpha=60^{\circ}$, $P_1=15$ кH, $P_2=10$ кH, M=8кHм.



Решение (рис. 8)

Освободим плиту от связей, приложим к ней реакции связей. На схеме показаны: \bar{R}_{Ax} , \bar{R}_{Ay} — составляющие реакции шарнира A, \bar{R}_C — реакция подвижного шарнира C, направленная вдоль стержня CE. Силу \bar{P}_2 разложим на составляющие



$$\vec{P}_2 = \vec{P}_{2x} + \vec{P}_{2y}$$

Уравнения равновесия плиты имеют вид

$$\sum F_{kx} = 0; \qquad R_{Ax} + P_2 \cos 45^o - R_C \cos 60^o = 0;$$

$$\sum F_{\kappa y} = 0; \qquad R_{Ay} + P_2 \sin 45^o + R_C \sin 60^o = 0;$$

$$\sum m_A(F_k) = 0; \qquad -(R_C \sin 60^o)a - (R_C \cos 60^o)b - (P_2 \sin 45^o)a + P_1a/2 + M = 0$$
 Из решения этой системы уравнений находим

$$R_{Ax} = -0.6\kappa H$$
, $R_{Ay} = -18,26\kappa H$, $R_{A} = 12,92\kappa H$

Задача 5 (рис. 9, рис. 10)

Определить модули главного вектора и главного момента системы сил, изображенной на рисунке, если $F_1 = 6$ кH, $F_2 = 4$ кH, $F_3 = 3$ кH. Силы приложены в вершинах прямоугольного параллелепипеда со сторонами 5, 3 и 4 м.

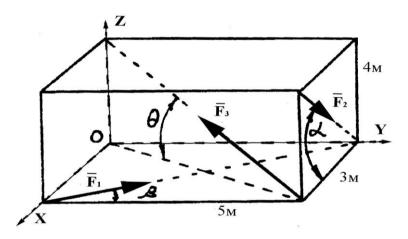


Рис. 9

Обозначим углы α , β , θ , как показано на рисунке 9. В ходе решения понадобятся значения синусов и косинусов этих углов, которые определим ниже.

$$\sin \alpha = \frac{4}{\sqrt{4^2 + 3^2}}, \cos \alpha = \frac{4}{\sqrt{4^2 + 3^2}},$$

$$\sin \beta = \frac{3}{\sqrt{5^2 + 3^2}}, \cos \beta = \frac{3}{\sqrt{5^2 + 3^2}},$$

$$\sin \theta = \frac{4}{\sqrt{4^2 + 3^2 + 5^2}}, \cos \theta = \frac{\sqrt{5^2 + 3^2}}{\sqrt{4^2 + 3^2 + 5^2}}$$

Находим проекции главного вектора на оси координат

$$R_{x} = \sum F_{kx}; \qquad R_{x} = -F_{1} \sin \beta - F_{3} \cos \theta \sin \beta - F_{2} \cos \alpha;$$

$$R_{y} = \sum F_{ky}; \qquad R_{y} = F_{1} \cos \beta - F_{3} \cos \theta \cos \beta;$$

$$R_{z} = \sum F_{kz}; \qquad R_{z} = F_{3} \sin \theta - F_{2} \sin \alpha.$$

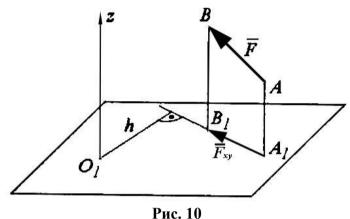
Определяем значения проекций главного вектора:

$$\mathbf{R} = \sqrt{\mathbf{R}_x^2 + \mathbf{R}_y^2 + \mathbf{R}_z^2}$$

Подставляем численные значения величин в эти уравнения и определяем числовые значения проекций главного вектора, которые равны: $R_x = -6.8 \text{ kH}$; $R_y = 3 \text{ kH}$; $R_z = -1.5 \text{ kH}$; R = 7.6 kH.

Вычислим проекции главного момента M_0 на оси координат рис. 10.

Моментом силы относительно оси называется скалярная величина, равная моменту проекции этой силы на перпендикулярную оси плоскость, относительно точки пересечения оси и плоскости. Момент будет равен нулю, если линия действия силы параллельна оси или линия действия силы пересекает ось.



Момент силы относительно оси будет иметь знак плюс, когда с положительного конца оси поворот, который стремится совершить сила F, виден происходящим против хода часовой стрелки, и знак минус - по ходу часовой стрелки.

Проекции главного момента M_0 на оси координат и величина этого момента определяются по формулам

$$M_x = \sum m_{kx};$$
 $M_x = 5 \cdot F_3 \sin \theta - 5 \cdot F_2 \sin \alpha;$
 $M_y = \sum m_{ky};$ $M_y = -3 \cdot F_3 \sin \theta;$
 $M_z = \sum m_{kz};$ $M_z = 3 \cdot F_1 \cos \beta + 5 \cdot F_2 \cos \alpha.$

$$M_0 = \sqrt{M_x^2 + M_y^2 + M_z^2}$$

После подстановки численных значений, получим $M_x = -7.5$ кНм; $M_y = -5.1$ кНм; $M_z = 27.4$ кНм; $M_0 = 28.9$ кНм.

Задача 6 (рис. 11)

Колесо радиуса R=0.6 [м] катится без скольжения по прямолинейному участку пути; скорость его центра С постоянна и равна $V_C=12$ [м/с].

Найти угловую скорость колеса и скорости концов M_1 , M_2 , M_3 , M_4 вертикального и горизонтального диаметров колеса.

Решение (рис. 11)

Колесо совершает плоско — параллельное движение. Мгновенный центр скоростей колеса находится в точке M_1 контакта горизонтальной плоскости, то есть

$$V_{MI}=0.$$

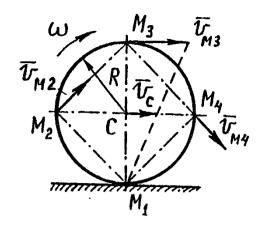


Рис. 11

Угловая скорость колеса

$$\omega = \frac{V_C}{CM_1} = \frac{V_C}{R} = \frac{12}{0.6} = 20$$
 [1/c].

Находим скорости точек M_2 , M_3 и M_4

$$\begin{split} V_{M2} &= \omega \cdot M_2 M_1 = \frac{V_C}{R} R \sqrt{2} = V_C \sqrt{2} = 16,92 \\ [\text{M/c}] \\ V_{M3} &= \omega \cdot M_3 M_1 = \frac{V_C}{R} 2r = 2V_C = 24 \\ [\text{M/c}] \\ V_{M4} &= \omega \cdot M_4 M_1 = \frac{V_C}{R} R \sqrt{2} = V_C \sqrt{2} = 16,92 \\ [\text{W/c}] \\ \overline{V}_{M2} \perp M_2 M_1 : \overline{V}_{M3} \perp M_3 M_1 : \overline{V}_{M4} \perp M_4 M_1 \end{split}$$

Задача 7 (рис. 12)

Ведущее колесо автомобиля радиуса R=0.5 [м] катится со скольжением (с буксованием) по прямолинейному участку шоссе; скорость его центра С постоянна и равна $V_C=4$ [м/с]. Мгновенный центр скоростей колеса находится в точке P на расстоянии h=0.3 [м] от плоскости качения. Найти угловую скорость колеса и скорости точек A и B его вертикального диаметра.

Решение (рис. 12)

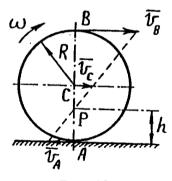


Рис. 12

Угловая скорость колеса

$$\omega = \frac{V_C}{CP} = \frac{V_C}{R - h} = \frac{4}{0.5 - 0.3} = 20$$
 [1/c]

Находим скорости точек А и В

$$\begin{split} V_{A} &= \omega \cdot AP = \omega \cdot h = 20 \cdot 0, 3 = 6_{\text{[M/c]}} \\ V_{B} &= \omega \cdot BP = \omega \cdot (2R - h) = 20 \cdot 0, 7 = 14_{\text{[M/c]}}; \\ \overline{V}_{A} \perp AP : \overline{V}_{B} \perp BP \end{split}$$

Задача 8 (рис. 13)

Ведомое колесо автомобиля радиуса $R=0.5[\mathrm{M}]$ катится со скольжением (с юзом) по прямолинейному участку шоссе; скорость его центра С постоянна и равна $V_C=9~[\mathrm{M/c}]$. Мгновенный центр скоростей колеса находится в точке P на расстоянии $h=0.4~[\mathrm{M}]$ от плоскости качения. Найти угловую скорость колеса и скорости точек A и B его вертикального диаметра.

Решение (рис. 13)

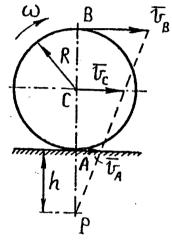


Рис. 13

Угловая скорость колеса

$$\omega = \frac{V_C}{CP} = \frac{V_C}{R+h} = \frac{9}{0.5+0.4} = 10$$

Находим скорости точек А и В

$$\begin{aligned} V_A &= \omega \cdot AP = \omega \cdot h = 10 \cdot 0, 4 = 4 \text{ [m/c]} \\ V_B &= \omega \cdot BP = \omega \cdot (R+h) = 10 \cdot 1, 4 = 14 \text{ [m/c]}; \end{aligned}$$

$$\overline{V}_A \perp AP$$
: $\overline{V}_B \perp BP$.

Задача 9 (рис. 14, рис. 15)

Для заданного положения механизма, найти скорости точек A, B, C, Д и угловые скорости звена AB и колеса с ребордой, катящегося без скольжения. Дана угловая скорость кривошипа OA и размеры: $\omega_{OA} = 2 \text{ c}^{-1}$, OA = 0,3 м, AB = 0,4 м, R = 0,15 м, r = 0,1 м.

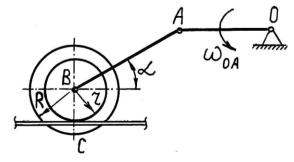


Рис. 14

Решение (рис. 15)

Кривошип OA совершает вращательное движение, звено AB и колесо – плоскопараллельное движение.

Находим скорость точки A звена ОА $v_A = \omega_{OA}OA = 2 \times 0,3 = 0,6 mc^{-1}$

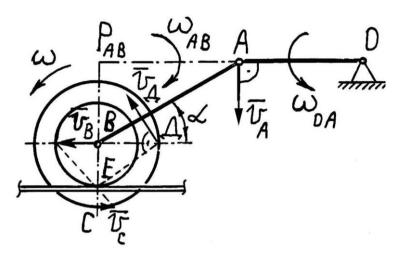


Рис. 15

Зная направление скоростей точек A и B звена AB, определяем положение его мгновенного центра скоростей – точку P_{AB} . ($\vec{v}_A \perp OA$; вектор \vec{v}_B направлен по горизонтали).

$$\omega_{AB} = \frac{v_A}{AP_{AB}} = \frac{v_{AB}}{AP_{AB}\cos 30^o} = \frac{0.6}{0.4 \times 0.866} = 1,732c^{-1}$$

$$v_B = \omega_{AB}BP_{AB} = \omega_{AB}(AB\sin 30^\circ) = 1,732(0,4 \times 0,5) = 0,346 \text{Mc}^{-1}$$

Мгновенный центр скоростей колеса находится в точке Е.

Угловая скорость колеса и скорости точек С и Д:

$$\omega = \frac{v_B}{BE} = \frac{v_B}{r} = \frac{0,346}{0,1} = 3,46c^{-1}$$

$$v_C = \omega CE = \omega (R - r) = 3,46(0,15 - 0,1) = 0,173 \text{Mc}^{-1}$$
.

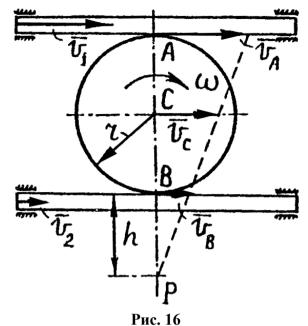
$$v_{\mathcal{A}} = \omega \mathcal{A}E = \omega \sqrt{R^2 + r^2} = 3,46\sqrt{0,15^2 + 0,1^2} = 0,634mc^{-1}$$

Задача 10 (рис. 16)

Две параллельные рейки движутся в одну сторону со скоростями $V_1 = 1,8$ м/с и $V_2 = 0,6$ м/с. Между рейками зажат диск радиуса r = 0,3 м, катящийся по рейкам без скольжения. Найти угловую скорость диска и скорость его центра C.

Решение (рис. 16)

Скорости точек A и B диска (этими точками диск касается реек) $V_A = V_I$; $V_B = V_2$



Мгновенный центр скоростей диска лежит на прямой АВ в некоторой точке Р, причем

$$\frac{V_A}{AP} = \frac{V_B}{BP}$$
 или $\frac{V_A}{2r+h} = \frac{V_B}{h}$.

Отсюда находим

$$h = BP = \frac{V_B \cdot 2r}{V_A - V_B} = \frac{0.6 \cdot 0.6}{1.8 - 0.6} = 0.3$$
 [M]

Угловая скорость диска и скорость его центра

$$\omega = \frac{V_B}{BP} = \frac{V_B}{h} = \frac{0.6}{0.3} = 2$$
[1/c]
$$V_C = \omega \cdot CP = \omega(r+h) = 2 \cdot 0.6 = 1.2 \text{ [M/c]}$$

Задача 11 (рис. 17, рис. 18)

Найти угловую скорость шатуна АВ и скорости точек В и С кривошипно-шатунного механизма. Дана угловая скорость кривошипа ОА и размеры: $\omega_{OA} = 2 \text{ c}^{-1}$, OA = AB = 0,35 м, AC = 0.18 M.

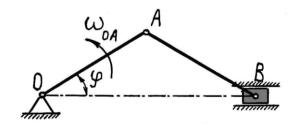


Рис. 17

Решение (рис. 18)

Кривошип ОА совершает вращательное движение, шатун АВ – плоскопараллельное движение.

Находим скорость точки А звена ОА:

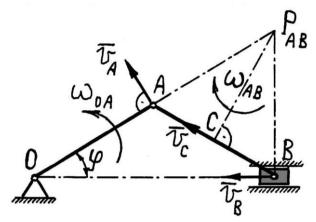


Рис. 18

$$v_A = \omega_{OA}OA = 2 \times 0.36 = 0.72 \text{mc}^{-1}, \vec{v}_A \perp OA$$

Скорость точки B направлена по горизонтали. Зная направление скоростей точек A и B шатуна AB, определяем положение его мгновенного центра скоростей – точку P_{AB} .

$$\omega_{AB} = \frac{v_A}{AP_{AB}} = \frac{0.72}{0.36} = 2c^{-1}$$
, $AP_{AB} = AB$.

$$v_B = \omega_{AB}BP_{AB} = 2 \times 0.36) = 0.72 \text{Mc}^{-1}, \text{ BP}_{AB} = \text{AB}.$$

 $v_C = \omega_{AB}CP_{AB} = \omega_{AB}(BP_{AB}\sin 60^\circ) = 2(0.36 \times 0.866) = 0.52 \text{Mc}^{-1},$
 $\vec{v}_C \perp CP_{AB}$

Задача 12 (рис. 19, рис. 20)

В шарнирном четырехзвеннике ОАВС ведущий кривошил ОА = $10\sqrt{3}$ [см] равномерно вращается вокруг оси О с угловой скоростью ω = 4 [сек $^{-1}$] и при помощи шатуна AB = 20 [см] приводит во вращательное движение кривошил ВС вокруг оси С. Определить скорости точек А и В, а также угловые скорости шатуна АВ и кривошила ВС.

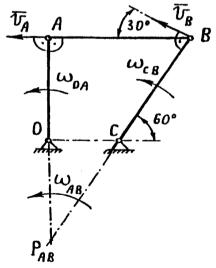


Рис. 19

Решение (рис. 19)

Скорость точки А кривошипа ОА

$$V_A = \omega_{OA}OA = 4 \cdot 10\sqrt{3} = 69.2$$
 [cm/c]; $\overline{V}_A \perp OA$

Взяв точку А за полюс, составим векторное уравнение

$$\overline{V}_{\scriptscriptstyle B} = \overline{V}_{\scriptscriptstyle A} + \overline{V}_{\scriptscriptstyle BA}$$
 ,

$$_{\Gamma \Box e}$$
 $\overline{V}_{\scriptscriptstyle B} \perp \mathit{CB}$ $_{\scriptscriptstyle H}$ $\overline{V}_{\scriptscriptstyle BA} \perp \mathit{BA}$.

Графическое решение этого уравнения дано на рис. 20 (план скоростей).

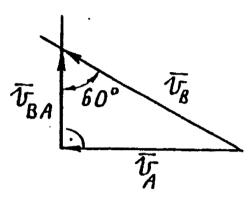


Рис. 20

С помощью плана скоростей получаем

$$V_B = \frac{V_A}{\cos 30^\circ} = 80$$
 [cm/c]; $V_{BA} = V_B \sin 30^\circ = 40$ [cm/c].

Угловая скорость шатуна АВ

$$\omega_{AB} = \frac{V_{BA}}{BA} = 2$$
 [c⁻¹].

Скорость точки В можно найти с помощью теоремы о проекциях скоростей двух точек тела на соединяющую их прямую

$$\Pi p_{AB} \overline{V}_{B} = \Pi p_{AB} \overline{V}_{A}$$
; $V_{B} = \frac{V_{A}}{\cos 30^{\circ}} = 80$ [cm/c].

В заключении найдем скорость точки В с помощью мгновенного центра скоростей P_{AB} шатуна AB. Зная направления скоростей точек A и B ($\overline{V}_{A}\perp OA$ и $\overline{V}_{B}\perp CB$) находим положение точки P_{AB} .

угловая скорость шатуна AB
$$\omega_{AB} = \frac{V_A}{AP} = \frac{V_A}{AB \cdot tg \, 60^\circ} = 2$$
 [c $^{-1}$].

Скорость точки В и угловая скорость кривошипа СВ

$$V_B = \omega_{AB}BP_{AB} = \omega_{AB} \frac{AB}{\sin 30^\circ} = 80$$
 [cm/c]; $\omega_{CB} = \frac{V_B}{CB} = \frac{V_B \sin 60^\circ}{OA} = 4$ [c⁻¹].

Задача 13 (рис. 21)

Точка массы т движется в плоскости Оху согласно уравнениям:

$$x = a \sin \omega t;$$
 $y = b \cos \omega t$

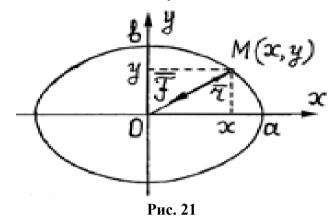
Найти силу, действующую на точку.

Решение (рис. 21)

Найдем траекторию точки. Исключив время t из уравнений ее движения. Получим

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Траекторией точки М является эллипс с полуосями а и b .



При t=0 x_0 = 0 и y_0 = b. Точка движется по эллипсу по часовой стрелке.

Проекции приложенной к точке силы \vec{F} на оси координат:

$$F_x = m\ddot{x} = -ma\omega^2 \sin \omega t = -m\omega^2 x;$$

$$F_{y} = m\ddot{y} = -mb\omega^{2}\cos\omega t = -m\omega^{2}y.$$

Проекции радиус-вектора \vec{r} точки М на оси координат и длина этого вектора равны:

$$r_x = x;$$
 $r_y = y;$ $\vec{r} = \vec{r}(x, y);$

$$r = \sqrt{r_x^2 + r_y^2} = \sqrt{x^2 + y^2}$$
.

Далее получаем:

$$F_{x} = -m\omega^{2}r_{x}; \qquad F_{y} = -m\omega^{2}r_{y}; \qquad F = m\omega^{2}r;$$

$$\vec{F} = -m\omega^{2}\vec{r}.$$

Сила \vec{F} направлена к точке О и её величина пропорциональна расстоянию от начала координат до точки приложения этой силы.

Задача14 (рис. 22)и (рис. 23)

Груз M массы m=0,102 кг, подвешенный на нити длиной OM= l=0,3 м в точке O, представляет собой конический маятник, то есть описывает окружность в горизонтальной плоскости, причем нить составляет с вертикалью угол $\alpha=60^{\circ}$.

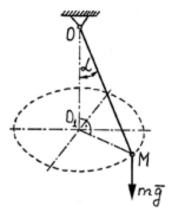


Рис. 22

Определить скорость у груза и натяжение Т нити.

Решение (рис. 23)

Будем считать груз материальной точкой. Приложим к точке M силу тяжести $\stackrel{mg}{f}$ и натяжение нити \vec{T} .

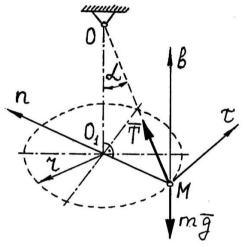


Рис. 23

Построим подвижную естественную систему координат Мтпb.

Суммы проекций приложенных к точке сил на указанные оси:

$$a_{\tau} = \frac{dv}{dt};$$
 $a_n = \frac{v^2}{r} = \frac{v^2}{l \sin \alpha};$ $a_b = 0.$

Составим дифференциальные уравнения движения точки в подвижной естественной системе координат:

$$m\frac{dv}{dt} = 0;$$
 $m\frac{v^2}{l\sin\alpha} = T\sin\alpha;$ $0 = T\cos\alpha - mg.$

Из системы уравнений находим:

$$v = const;$$
 $T = \frac{mg}{\cos \alpha};$ $v = \sqrt{gl \frac{\sin^2 \alpha}{\cos \alpha}}$

С учетом исходных данных получаем:

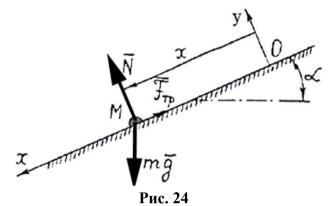
$$T = 2H; \qquad v = 2,1 mc^{-1}$$

Задача 15 (рис. 24)

Тело спускается по наклонной плоскости, расположенной под углом ${f \alpha}$ к горизонту. В начальный момент тело имело скорость ${f V}_0$. Найти уравнение движения тела, если коэффициент трения равен ${f f}$.

Решение (рис. 24)

Примем тело за материальную точку ${\bf M}$. Начало координат поместим в начальное положение материальной точки. Ось ${\bf X}$ направим вдоль наклонной плоскости в сторону движения точки, а ось ${\bf Y}$ – перпендикулярно плоскости.



Приложим к точке силу тяжести mg , нормальную реакцию плоскости N и силу трения F_{mp} . Составляем уравнения движения точки

$$m\ddot{x} = mg \sin \alpha - F_{mn}$$

$$m\ddot{y} = N - mg \cos \alpha$$

Поскольку движение точки происходит только вдоль оси X, то $\ddot{y}=0$ и из второго уравнения следует, что $N=mg\,\cos\,\alpha$.

Сила трения не обеспечивает точке состояние покоя (точка движется), сила трения имеет предельное значение $F_{mp} = fN = fmg\cos\alpha$.

Итак, уравнение движения точки имеет вид

$$m \cdot \ddot{x} = mg \sin \alpha - fmg \cos \alpha = mg(\sin \alpha - f \cos \alpha)$$

Правая часть уравнения движения является постоянной величиной, учитывая, что $F_0 = mg(sin\alpha - f\cos\alpha)_{\ \text{и}}\ x_0 = 0_{\ \text{, после интегрирования получим}}$

$$x = \frac{g(\sin\alpha - f\cos\alpha)}{2}t^2 + V_0t$$

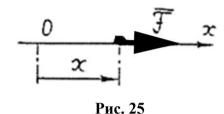
Задача 16 (рис. 25)

Материальная точка массой m движется прямолинейно под действием силы $F = F_0 \cos \omega t$ (F_0 и ω - постоянные величины). Пренебрегая весом, определить скорость и

 $m{t}_I = rac{m{\pi}}{2m{\omega}}$ положение точки в момент времени $m{V}_0$, если она в начальный момент находилась в начале координат и ее скорость была равна $m{V}_0$.

Решение: (рис. 25)

Точка движется прямолинейно, поэтому достаточно одной оси координат. Направим ось X вдоль траектории точки. Изобразим точку в промежуточном положении на ее траектории. Приложим к точке силу F (вес точки и реакции связей отсутствуют).



Составим уравнение движения точки

$$m\ddot{x} = F_0 \cos \omega t$$

Скорость точки:

$$V = \dot{x} = \frac{1}{m} \int F_0 \cos \omega t dt = \frac{F_0}{m\omega} \sin \omega t + C_1$$

Подставляя начальные условия $t=0\,;\;V=V_0$ с учетом того, что $sin0=0\,,$ получим $C_1=V_0$

Закон движения точки:

$$x = \int V(t)dt = \int \left(\frac{F_0}{m\omega}\sin\omega t + V_0\right)dt = -\frac{F_0}{m\omega^2}\cos\omega t + V_0t + C_2$$

Подставляя начальные условия t=0; x=0 с учетом того, что cos0=1, получим $C_2=\frac{F_0}{m\omega^2}$

$$\begin{split} t_1 &= \frac{\pi}{2\omega} \\ V &= \frac{F_0}{m\omega} \sin\omega \frac{\pi}{2\omega} + V_0 = \frac{F_0}{m\omega} \sin\frac{\pi}{2} + V_0 = \frac{F_0}{m\omega} + V_0 \\ x &= -\frac{F_0}{m\omega^2} \cos\omega \frac{\pi}{2\omega} + V_0 \frac{\pi}{2\omega} + \frac{F_0}{m\omega^2} = V_0 \frac{\pi}{2\omega} + \frac{F_0}{m\omega^2} \end{split}$$

Задача 17 (рис. 26)

Груз массы m подвешен на нити длиной l. В начальный момент времени груз отклонили в сторону (нить натянута) и сообщили ему горизонтальную скорость, перпендикулярную нити. Найти величину скорости груза и натяжение нити, если нить составляет с вертикалью постоянный угол α .

Решение (рис. 26)

Будем считать груз материальной точкой. Приложим к грузу силу тяжести mg и натяжение нити N .

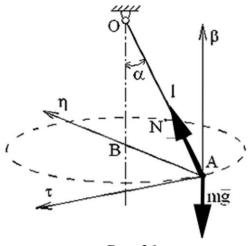


Рис. 26

Как следует из условия задачи, при движении груза нить описывает коническую поверхность, траекторией груза является окружность с центром в точке B и радиусом $AB=l\sin\alpha$. Если известна траектория, воспользуемся естественной системой координат (τ,η,β) и уравнениями движения в естественной форме

$$\begin{cases} m\dot{V} = 0\\ m \cdot \frac{V^2}{l\sin\alpha} = N\sin\alpha\\ 0 = N\cos\alpha - mg \end{cases}$$

Из первой формулы следует, что скорость движения груза будет постоянной по величине, т.е. будет сохранять начальное значение. Из третьей формулы можем выразить натяжение нити

$$N = \frac{mg}{\cos \alpha}$$

Подставив полученное выражение силы натяжения во вторую формулу, получим

$$m \cdot \frac{V^2}{l \sin \alpha} = \frac{mg}{\cos \alpha} \sin \alpha,$$

$$V = \sqrt{\frac{lg \sin^2 \alpha}{\cos \alpha}}$$

Задача 18. (рис. 27)

При движении поезда массы ${f m}$ по участку пути однородного профиля сила сопротивления движению изменяется по закону ${f R} = {f R}_0 + {f aV}$, где ${f R}_0$ и ${f a}$ - постоянные величины; ${f V}$ - переменная скорость поезда. Сила тяги локомотива изменяется по закону

 $\mathbf{T} = \mathbf{F}_0 - \mathbf{b} \mathbf{V}_{, \text{ где}} \mathbf{F}_{0 \text{ и } \mathbf{b}} \mathbf{b}_{-\text{ постоянные величины (}} \mathbf{F}_0 > \mathbf{R}_{0}_{)}$. Определить закон изменения скорости и закон движения поезда.

Решение (рис. 27)

Примем поезд за материальную точку. Направим координату X по направлению движения. Начало координат совпадает с начальным положением поезда.

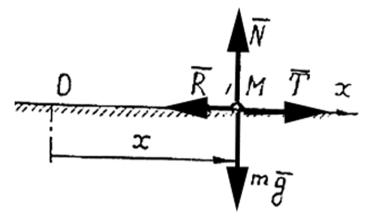


Рис. 27

Изобразим точку в промежуточный момент времени на ее траектории. К точке приложены сила тяжести mg , движущая сила T , сила сопротивления R и нормальная реакция плоскости N .

Дифференциальное уравнение движения точки имеет вид

$$m\frac{dV}{dt} = (F_0 - bV) - (R_0 + aV)$$

Перегруппировав слагаемые, получим

$$m\frac{dV}{dt} = -\frac{(b+a)V}{m} - \frac{F_0 - R_0}{m}$$

решение этого уравнения имеет вид

$$V = C_1 e^{-qt} + \frac{p}{q}, \varepsilon \partial e$$
$$q = \frac{a+b}{m}, p = \frac{F_0 - R_0}{m}$$

Постоянная интегрирования C_I определяется из начальных условий: при t=0 , V=0 ,

$$C_1 = \frac{F_0 - R_0}{b + a}$$

$$V = \frac{p}{q}(1 - e^{-qt}) = \frac{F_0 - R_0}{b + a} \left(1 - e^{-(\frac{a+b}{m})t} \right)$$

Закон изменения скорости

Установившееся значение скорости (значение скорости через достаточно большой

$$V = \lim_{t \to \infty} V = \frac{p}{q} = \frac{F_0 - R_0}{b + a}$$

промежуток времени)

Подставляя зависимости V=dx/dt, получим дифференциальное уравнение

$$dx = \frac{p}{q}(1 - e^{-qt})dt.$$

После интегрирования которого, с учетом начального условия $(t=0; x=x_0=0)$, находим закон движения точки

$$x = \frac{p}{q} \left(t - \frac{1}{q} \left(-e^{-qt} \right) \right).$$

ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ

Задача 19 (рис. 28)

Какую начальную скорость, параллельную линии наибольшего ската наклонной плоскости, надо сообщить оси колеса радиуса ${}^{\mathbf{r}}$, чтобы оно, катясь без проскальзывания, поднялось на высоту ${}^{\mathbf{h}}$ по наклонной плоскости, образующей угол ${}^{\mathbf{\alpha}}$ с горизонтом? Коэффициент трения качения равен ${}^{\mathbf{\delta}}$. Колесо считать однородным диском. Определить также ускорение оси колеса.

Решение (рис. 28)

Воспользуемся теоремой об изменении кинетической энергии.

$$T - T_0 = \sum_{i=1}^{n_A} A_k^e$$

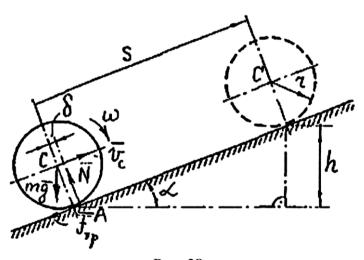


Рис. 28

Кинетическая энергия колеса в начальном положении

$$T_0 = \frac{mV_c^2}{2} + \frac{J_c\omega^2}{2} = \frac{3mV_c^2}{4}$$

Собственный момент инерции колеса равен $J_c = \frac{1}{2} m r^2$ и его угловая скорость $\omega = \frac{V_c}{r}$

На колесо действуют силы: тяжести mg , нормальная реакция плоскости $^{N=mg\cos\alpha}$, трение скольжения $^{F_{mp}}$ и момент трения качения $^{M_{mp}=N\delta}$. Работа активных сил,

 $\varphi = \frac{3}{r}$ приложенных к колесу, с учетом того, что угол поворота колеса равен

$$\sum_{k=1}^{n_A} A_k^e = -mgs \sin \alpha - (N\delta)\phi = -mgs \left(\sin \alpha + \frac{\delta}{r} \cos \alpha\right)$$

На основании указанной теоремы имеем:

$$\frac{3}{4}mV_c^2 - \frac{3}{4}mV_0^2 = -mgs\left(\sin\alpha + \frac{\delta}{r}\cos\alpha\right)$$

В верхнем положении колесо остановится, следовательно, $V_c = 0$ и перемещение оси

 $s = \frac{h}{\sin\alpha}$ колеса составит — . Скорость оси колеса в начальном положении

$$V_{c0} = \sqrt{\frac{4}{3}gh\left(1 + \frac{\delta}{r}ctg\alpha\right)}$$

Дифференцируя по времени это выражение, получим

$$2\frac{3\cdot}{4}V_c\frac{dV_c}{dt} = -g\left(\sin\alpha + \frac{\delta}{r}\cos\alpha\right)\frac{ds}{dt}$$

Ускорение оси колеса (учитываем, что $V_c = \frac{ds}{dt}$)

$$a_c = \frac{dV_c}{dt} = -\frac{2g}{3} \left(\sin \alpha + \frac{\delta}{r} \cos \alpha \right)$$

Задача 20 (рис. 29)

Вагонетка для обслуживания пути двигалась по горизонтальному участку пути под действием двигателя. Масса корпуса вагонетки \mathbf{M} =5000кг, масса каждой из двух колесных пар \mathbf{m} =600кг, коэффициент трения качения δ =0.003м. Колесные пары представляют собой однородные диски радиуса \mathbf{r} =0.3м. Какой путь пройдет вагонетка до остановки после выключения двигателя, если в момент выключения ее скорость была \mathbf{V}_0 =36км/ч?

Решение (рис. 29)

Конструкция состоит из трех тел: корпуса и двух колесных пар. Корпус движется поступательно, колесные пары — плоскопараллельно. Используем теорему об изменении кинетической энергии:

$$T - T_0 = \sum_{i=1}^{n_A} A_k^e$$

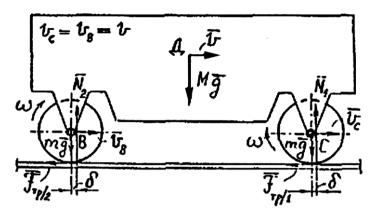


Рис. 29

 $J_c = \frac{1}{2} m r^2$, угловая скорость Собственный момент инерции каждой колесной пары

 $\omega = \frac{V}{r}$ (V- скорость корпуса вагонетки), кинетическая энергия системы может быть выражена

$$T = \frac{MV^2}{2} + 2\left(\frac{mV^2}{2} + \frac{J_c\omega^2}{2}\right) = \frac{MV^2}{2} + 2\left(\frac{mV^2}{2} + \frac{mr^2}{2 \cdot 2}\left(\frac{V}{r}\right)^2\right) = \frac{M + 3m}{2}V^2.$$

На рассматриваемую систему действуют силы: тяжести Mg и mg , нормальные реакции

$$N_1 = N_2 = N = \frac{Mg + 2mg}{2}$$
 колесных пар
$$M_{mp1} = M_{mp2} = N_1 \delta = N_2 \delta = N \delta$$
, а также трения скольжения F_{mp1} и F_{mp2} . Работа сил,

приложенных к колесу, с учетом того, что угол поворота колеса может быть выражен

(s - перемещение вагонетки), а также формулы

$$\sum_{k=1}^{n_A} A_k^e = -(N_1 \delta) \varphi - (N_2 \delta) \varphi = -2 \frac{M + 2m}{2} \frac{g \delta s}{r}$$

$$\frac{M+3m}{2}V^2 - \frac{M+3m}{2}{V_0}^2 = -\frac{(M+2m)g\,\delta s}{r}$$

Поскольку в конце рассматриваемого промежутка времени вагонетка остановится, следовательно, V=0. Поэтому после преобразований получим величину пройденного пути

$$s = \frac{(M+3m)rV_0^2}{2(M+2m)g\delta} = \frac{(5000+3\cdot600)\cdot0.3\cdot\left(36\cdot\frac{1000}{3600}\right)^2}{2\cdot(5000+2\cdot600)\cdot9.81\cdot0.03} \approx 55.9m$$