

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УΤΙ	ВЕРЖД	АЮ
		Директор ИДО С.И. Качин
«	»	2013 г.

ГИДРОГАЗОДИНАМИКА

Методические указания и индивидуальные задания для студентов ИДО, обучающихся по направлению 140100 «Теплоэнергетика и теплотехника»

Составитель Е.Е. Бульба

Семестр	6
Кредиты	4
Лекции, часов	6
Лабораторные работы, часов	4
Практические занятия, часов	4
Индивидуальные задания	1
Самостоятельная работа, часов	94
Формы контроля	экзамен

Издательство Томского политехнического университета 2013

УДК 533.6

Гидрогазодинамика: метод. указ. и индивид. задания для студентов ИДО, обучающихся по напр. 140100 «Теплоэнергетика и теплотехника» / сост. Е.Е. Бульба; Томский политехнический университет. — Томск: Изд-во Томского политехнического университета, 2013. — 45 с.

Методические указания и индивидуальные задания рассмотрены и рекомендованы к изданию методическим семинаром кафедры теоретической и промышленной теплотехники «19» ноября 2013 г., протокол N_2 5.

Зав. кафедрой ТПТ,	 _ Кузнецов Г.В
д. физмат. н., профессор	

Аннотация

Методические указания и индивидуальные задания по дисциплине «Гидрогазодинамика» предназначены для студентов ИДО, обучающихся по направлению 140100 «Теплоэнергетика и теплотехника». Данная дисциплина изучается в одном семестре.

Приведено содержание основных тем дисциплины, указаны темы практических занятий. Приведены варианты индивидуального домашнего задания. Даны методические указания по выполнению индивидуального домашнего задания.

1. МЕСТО ЛИСПИПЛИНЫ В СТРУКТУРЕ

ОГЛАВЛЕНИЕ

ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	4
2. СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОГО РАЗДЕЛА ДИСЦИПЛИНЫ	5
Тема 1. Основные физические свойства жидкости и газа	5
Тема 2. Основные понятия кинематики и динамики	6
Тема 3. Основные уравнения и теоремы динамики идеальной жидкости и	газа7
Тема 4. Равновесие жидкости и газа	7
Тема 5. Одномерные течения вязкой несжимаемой жидкости	
Тема 6. Основы теории подобия	
3. СОДЕРЖАНИЕ ПРАКТИЧЕСКОГО РАЗДЕЛА ДИСЦИПЛИНЫ	11
3.1. Тематика практических занятий	11
3.2. Перечень лабораторных работ	11
4. ИНДИВИДУАЛЬНЫЕ ДОМАШНИЕ ЗАДАНИЯ	13
4.1. Общие методические указания	13
4.2. Варианты индивидуальных заданий и методические указания	14
4.2.1. Примеры решения задач	
4.2.2. Задачи для выполнения в ИДЗ	27
4.2.3. Вопросы для ИДЗ	37
5. ПРОМЕЖУТОЧНЫЙ КОНТРОЛЬ	42
5.1 Вопросы для подготовки к экзамену	42
5.2. Образец экзаменационного билета	
6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	44
6.1. Основная литература	44
6.2. Дополнительная литература	
	44

1. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Гидрогазодинамика» входит в цикл профессиональных дисциплин. При изучении дисциплины студенты знакомятся с основными законами движения и равновесия жидкости и газов, которые широко используются в современной теплотехнике при проектировании и эксплуатации энергетического оборудования.

Для полноценного усвоения большое значение имеют знания, умения, навыки и компетенции, приобретенные студентами при изучении физики и высшей математики.

Для успешного освоения дисциплины студенты должны **знать**:

- активные методы самостоятельной индивидуальной работы в познавательной, практической, творческой деятельности;
- сущность и значение информации в развитии современного общества;
- теоретические основы рабочих процессов в энергетических машинах и аппаратах;
- комплексные критерии результативности, продуктивности и эффективности функционирования техногенных сред и критериев выбора и создания энергетического оборудования;

иметь навыки:

- самостоятельной индивидуальной работы;
- использования основных методов, способов и средств получения, хранения и переработки информации для решения комплексных инженерных задач;
- использования основных законов естественнонаучных и математических дисциплин в инженерной деятельности и процессах в энергетическом машиностроении;
 - оценки конкурентных преимуществ инженерных решений.

Пререквизитами данной дисциплины являются: «Физика», «Высшая математика», *кореквизитами* – «Техническая термодинамика».

2. СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОГО РАЗДЕЛА ДИСЦИПЛИНЫ

Тема 1. Основные физические свойства жидкости и газа

Особенности в развитии механики жидкости и газа. Значение курса в учебном плане специальности.

Основные понятия и определения. Жидкость и ее свойства. Идеальная и реальная (вязкая) жидкости. Основные способы и виды движения жидкости: неустановившееся, установившееся, пространственное, плоское и одномерное.

Рекомендуемая литература: [1, разд. 2].

Методические указания

Необходимо изучить физические свойства жидкости и газа, используя знания, полученные при изучении раздела курса физики.

Вопросы и задания для самоконтроля

- 1. Перечислите основные физические свойства жидкостей.
- 2. Что подразумевается под жидкостью в гидравлике?
- 3. Что подразумевается под сплошностью среды?
- 4. Какая связь существует между плотностью и удельным весом жидкостей?
 - 5. Какова размерность плотности и удельного веса?
- 6. В каких единицах измеряется плотность и удельный вес в системе СИ?
- 7. Что такое коэффициент объемного сжатия жидкости? Какова его размерность?
- 8. Какая связь коэффициента объемного сжатия с модулем объемной упругости? Какова его размерность?
- 9. Что такое коэффициент температурного расширения? Какова его размерность?
 - 10. Что называется вязкостью жидкости?
- 11. Что такое коэффициент динамической вязкости? Какова его размерность?
- 12. Какая связь существует между коэффициентами динамической и кинематической вязкости?
- 13. В каких единицах измеряется динамическая и кинематическая вязкость в системе СИ?
 - 14. Какие жидкости относятся к аномальным?
 - 15. В чем отличие аномальных жидкостей от ньютоновских?

Тема 2. Основные понятия кинематики и динамики

Деформация элементарной частицы движущейся жидкости и понятие о теореме Гельмгольца – Коши. Потенциальное и вихревое движение жидкости. Потенциал скорости, функция тока. Линии тока и их уравнения.

Дифференциальное уравнение неразрывности потока. Уравнение Лапласа. Граничные условия. Понятие о методах исследования потенциальных течений.

Вихревое движение и его локализация в потоке. Вихревая линия и вихревая трубка. Циркуляция скорости. Теорема Стокса.

Распределение массы в сплошной среде.

Рекомендуемая литература: [1, разд. 3].

Методические указания

Необходимо изучить основные понятия, используя рекомендованную литературу.

Освоить основные понятия кинематики и динамики. Знать основные свойства линий тока. Уметь определять потенциал скорости и функцию тока. Уметь получать уравнение линии тока.

Вопросы и задания для самоконтроля

- 1. Что изучает кинематика и динамика жидкости?
- 2. Что представляет собой линия потока и траектория движения? В чем различие?
- 3. Что называется трубкой тока? Элементарной струйкой? Каковы их свойства?
 - 4. Что называется потоком жидкости?
 - 5. Что понимается под средней скоростью потока и расходом?
- 6. Напишите уравнение постоянства расхода. При каких условиях выполняется это уравнение?
 - 7. Напишите уравнение неразрывности (сплошности) потока.
- 8. Приведите примеры равномерного и неравномерного, напорного безнапорного движения.
 - 9. Как описывается поле скоростей методом Лагранжа?
 - 10. Как описывается поле скоростей методом Эйлера?

Тема 3. Основные уравнения и теоремы динамики идеальной жидкости и газа

Силы, действующие в жидкости: объемные (массовые) и поверхностные. Тензор напряжений. Уравнение динамики сплошной среды в напряжениях. Обобщенный закон Ньютона. Уравнение движения вязкой жидкости Навье – Стокса.

Модель идеальной жидкости. Уравнение движения идеальной жидкости — уравнение Эйлера. Уравнение Бернулли для идеальной жидкости (несжимаемой). Уравнение Бернулли для изотермического и адиабатического течения идеального газа. Общая форма уравнения энергии для установившегося движения сжимаемой жидкости. Скорость распространения звука. Числа Маха и коэффициент скорости. Понятие о газодинамических функциях и о газодинамических таблицах.

Рекомендуемая литература: [1, разд. 4].

Методические указания

Необходимо изучить модель идеальной жидкости. Знать основные уравнения и теоремы динамики идеальной жидкости. Уметь пользоваться газодинамическими таблицами.

Вопросы и задания для самоконтроля

- 1. Напишите систему уравнений Навье Стокса.
- 2. Какие условия однозначности вы знаете?
- 3. Назовите физический смысл слагаемых уравнения Навье Стокса.
- 4. Напишите систему уравнений движения Эйлера для идеальной жидкости.

Тема 4. Равновесие жидкости и газа

Напряжение в покоящейся жидкости. Уравнение равновесия жидкости и газа. Равновесие несжимаемой жидкости в поле сил тяжести и сжимаемой. Баротропное равновесие газа. Бароклинная атмосфера, формулы Бьеркнеса. Относительное равновесие. Силы давления на плоские и криволинейные стенки.

Рекомендуемая литература: [1, разд. 5].

Методические указания

Необходимо изучить понятия относительного и абсолютного равновесия. Знать основное уравнение равновесия. Уметь определять и рассчитывать силы, действующие на плоские и криволинейные стенки.

Вопросы и задания для самоконтроля

- 1. Как рассчитать силу давления на плоскую стенку?
- 2. Как рассчитать силу давления на криволинейную поверхность?
- 3. Как построить тело давления?
- 4. Напишите основное уравнение равновесия жидкости и газа.

Тема 5. Одномерные течения вязкой несжимаемой жидкости

Основные признаки и свойства одномерных течений. Плавноизменяющееся движение и закон распределения скорости по сечению. Средняя скорость и расход. Обобщение уравнения Бернулли на поток конечных размеров. Геометрическая и энергетическая интерпретация уравнения Бернулли.

Природа потерь энергии (напора). Классификация гидравлических сопротивлений. Структура общих формул для вычисления потерь. Основное уравнение равномерного движения. Коэффициент гидравлического трения, опытные данные.

Ламинарное и турбулентное течения, опыт Рейнольдса. Ламинарное течение в трубах. Формула Пуазейля. Начальный участок ламинарного течения.

Понятие о гидравлической неустойчивости. Элементы теории тур-булентности: уравнение Рейнольдса, добавочные напряжения; полуэмпирические теории турбулентного сопротивления. Гладкостенное течение: распределение скоростей и закон сопротивления. Квадратичный закон сопротивления. Начальный участок при турбулентном течении.

Основные типы местных гидравлических сопротивлений и их расчет. Течения в диффузорах и криволинейных каналах. Сопротивление пучка труб.

Основные задачи расчета трубопроводных систем. Аналитические и графические методы расчета. Построение пьезометрических графиков. Истечение несжимаемой жидкости из отверстий и насадков.

Рекомендуемая литература: [1, разд. 6-9].

Методические указания

Необходимо освоить основные признаки и свойства одномерных течений. Знать основные законы, описывающие одномерное течение жидкости. Уметь определять и рассчитывать основные типы гидравлических сопротивлений, истечение несжимаемой жидкости из отверстий и насадков. Уметь строить пьезометрические графики.

Вопросы и задания для самоконтроля

- 1. Что понимается под тонкой стенкой, малым отверстием, большим отверстием?
- 2. Какие виды сжатия струи при истечении из отверстия в тонкой стенке вы знаете?
- 3. Какими коэффициентами характеризуется истечение жидкости из отверстий и какова между ними аналитическая связь?
- 4. Чем отличается формула расхода жидкости для незатопленного и затопленного отверстий?
- 5. Какие технические задачи решаются на основе гидравлического расчёта истечения жидкости?
- 6. По какой зависимости определяется коэффициент скорости опытным путём?
- 7. Какие поправочные коэффициенты применяются при расчёте ф и µ при несовершенном сжатии?
- 8. Какая задача решается при опорожнении ёмкостей и от каких факторов зависит её решение?
 - 9. Что называется насадком и какие насадки вы знаете?
- 10. При каких условиях образуется сжатое сечение и на каком удалении от входа?
- 11. Почему в насадках коэффициент сжатия струи $\varepsilon = \omega_c/\omega$ принимается равным единице?
 - 12. Чем отличаются коэффициенты µ и ф для отверстия?
 - 13. Как учитывается влияние вязкости на коэффициенты µ и ф?
- 14. Что такое предельное (критическое) значение напора при истечении жидкости через насадки, и почему действительное значение меньше критического?
- 15. Назовите область применения цилиндрических насадков и дайте им краткую характеристику.
- 16. Назовите область применения конических насадков и дайте им краткую характеристику.

Тема 6. Основы теории подобия

Основы теории гидродинамического подобия. Пограничный слой. Толщина пограничного слоя и толщина вытеснения. Дифференциальные уравнения Прандтля для ламинарного пограничного слоя. Интегральное соотношение (уравнение количества движения) для ламинарного пограничного слоя на пластине с помощью интегрального соотношения.

Переход ламинарного погранслоя в турбулентный. Критическое число Рейнольдса и положение точки перехода на пластине. Пограничный слой на искривленных поверхностях. Влияние продольного градиента давления и отрыв погранслоя. Определение точки отрыва. Методы управления пограничным слоем.

Рекомендуемая литература: [1, разд. 10].

Методические указания

Необходимо освоить основы теории гидродинамического подобия. Знать дифференциальные уравнения Прандтля для ламинарного пограничного слоя, интегральное соотношение (уравнение количества движения) для ламинарного пограничного слоя на пластине с помощью интегрального соотношения. Уметь рассчитывать толщину пограничного слоя и толщину вытеснения.

Вопросы и задания для самоконтроля

- 1. Раскройте сущность физического моделирования.
- 2. Какова роль математического моделирования?
- 3. Что называется законами механического подобия?
- 4. В чем заключается сущность геометрического, кинематического и динамического подобия?
 - 5. Что такое коэффициенты подобия?
 - 6. Что такое критерий Ньютона?
 - 7. Каков физический смысл критерия Рейнольдса?
 - 8. Каков физический смысл критерия Фруда?
 - 9. Каков физический смысл критерия Вебера?
 - 10. Что характеризует критерий Сен-Венана (Ильюшина)?

3. СОДЕРЖАНИЕ ПРАКТИЧЕСКОГО РАЗДЕЛА ДИСЦИПЛИНЫ

3.1. Тематика практических занятий

В данном разделе приведены темы практических занятий по дисциплине «Гидрогазодинамика».

1. Гидростатика (2 часа):

- 1) расчет распределения давления в покоящейся жидкости;
- 2) расчет силы давления на плоские и криволинейные стенки.

Рекомендуемая литература: [1, 2, 3, 5].

2. Расчет трубопроводов (2 часа).

Рекомендуемая литература: [1, 2, 3, 5].

3.2. Перечень лабораторных работ

Лабораторный практикум является составной частью учебного процесса по дисциплине «Гидрогазодинамика».

Целью лабораторных работ, является изучение основных физических свойств жидкости, расчета гидравлических сопротивлений, коэффициентов истечения из отверстий и насадков. Лабораторные работы призваны закрепить теоретические знания по изучаемому курсу.

Студенты выполняют три лабораторные работы на портативных лабораторных стендах. Для каждой работы предусмотрены методические указания по ее выполнению, контрольные вопросы и требования к оформлению отчета.

1. Изучение физических свойств жидкости (1 час).

Цель работы: Освоение техники измерения плотности, коэффициентов теплового расширения, вязкости и поверхностного натяжения жидкостей.

2. Иллюстрация уравнения Бернулли (2 часа).

Цель работы: Опытное подтверждение уравнения Д. Бернулли для установившегося потока жидкости в канале переменного сечения: наблюдение понижения механической энергии по течению и перехода потенциальной энергии в кинетическую и обратно.

3. Исследование истечения жидкости через отверстия и насадки (1 час).

Цель работы: Экспериментальное определение коэффициентов истечения жидкости через малое круглое отверстие в тонкой стенке и внешний цилиндрический насадок.

Рекомендуемая литература: [8].

4. ИНДИВИДУАЛЬНЫЕ ДОМАШНИЕ ЗАДАНИЯ

4.1. Общие методические указания

В соответствии с учебным графиком предусмотрено выполнение одного индивидуального домашнего задания (ИДЗ). ИДЗ включает в себя ответы на теоретические вопросы, решение задач. Выполнение этих заданий необходимо для закрепления теоретических знаний и приобретения практических навыков решения типовых задач.

Студенты, независимо от формы обучения, выполняют индивидуальные домашние задания в течение семестра и отсылают их на проверку преподавателю.

выполнении При индивидуальных заданий домашних «Гидрогазодинамика» руководствоваться дисциплине следует следующим: материал необходимо изучать последовательно, по программе, по рекомендуемым учебным пособиям и учебникам. При этом особое внимание следует обратить на усвоение понятий, определений, законов, вывод уравнений и решение задач. Для лучшего усвоения материала желательно вести конспект, который будет также полезен для повторения материала в период подготовки к экзамену. Для закрепления материала рекомендуется отвечать на вопросы и задания для самоконтроля.

Номер варианта индивидуального задания определяется по последней цифре номера зачетной книжки. Например, если номер зачетной книжки Д- $11\Gamma10/12$, то номер варианта задания равен 2. Если номер зачетной книжки оканчивается на 0 (например, 3-3E10/30), то номер варианта задания равен 10.

Каждый студент должен решить 19 задач, выбрав данные своего варианта (п. 4.2.2), и ответить на теоретические вопросы по восьми темам (п. 4.2.3), выбрав номер вопроса, соответствующего своему варианту. Ответ на каждый теоретический вопрос не должен превышать одного листа.

В ИДЗ входят вопросы и задачи по каждой теме дисциплины. В конце выполненного ИДЗ необходимо указать, какие учебники, учебные пособия и электронные ресурсы были использованы при выполнении индивидуального домашнего задания.

Индивидуальные домашние задания, выполненные не по варианту, на проверку не принимаются.

Правильно выполненные работы студенту не возвращаются.

В случае, если индивидуальное домашнее задание не зачтено, оно возвращается студенту для доработки. При этом необходимо внести исправления и ответить на замечания, сделанные преподавателем.

Требования к оформлению индивидуального задания размещены на сайте ИДО в разделе СТУДЕНТУ \rightarrow ДОКУМЕНТЫ (http://portal.tpu.ru/ido-tpu).

4.2. Варианты индивидуальных заданий и методические указания

Перед решением задач по тому или иному разделу курса «Гидрогазодинамика» следует изучить основные законы и положения раздела, ответить на контрольные вопросы.

Решение любой задачи необходимо начинать с записи в общем виде того или тех уравнений гидромеханики или газовой динамики, которые позволили бы по известным величинам определить неизвестные, установленные содержанием задачи. Эти исходные уравнения обычно записывают в той размерности, которая наиболее удобна для решения поставленной задачи. Например, при определении давления в потоке сжимаемой жидкости (воздуха, газа) уравнение Бернулли целесообразно записать в размерности давления, а при решении той же задачи в потоке несжимаемой жидкости уравнение Бернулли лучше записать в единицах напора (м столба жидкости).

При решении задачи исходные уравнения желательно привести к более простому виду, удобному для расчетов. Так, в соответствии с условиями задачи, следует сократить или взаимно уничтожить одинаковые члены в правой и левой части соответствующего исходного уравнения, а также определить численной значение отдельных величин, непосредственно входящих в это уравнение. Например, в правой части уравнения Бернулли абсолютное давление P_2 равно атмосферному P_a , а в левой части этого уравнения абсолютное давление P_1 больше атмосферного и по условию задачи известно избыточное давление, соответствующее абсолютному P_1 . В этом случае целесообразно абсолютное давление P_2 выразить так:

$$P_{\rm l}=P_{\rm a}+P_{\rm H36}\,,$$

и взаимно уничтожить давление P_a в правой и левой части уравнения Бернулли. Другой пример: членом того же уравнения Бернулли является динамическое давление $\rho V^2/2$, а по условию задачи известен расход жидкости Q и площадь сечения потока F. Здесь удобнее в исходное

уравнение ввести численное значение скорости, предварительно определив его по формуле

$$V = Q / F$$
,

а не подставлять вместо выражения $\rho V^2/2$ выражение $\rho Q^2/(2F^2)$, что усложняет расчеты.

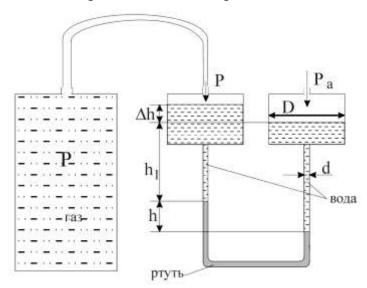
Решение задачи должно быть доведено до цифрового ответа в соответствующей размерности. Решение записывается в алгебраической форме, вместо букв подставляются соответствующие цифры и приводится цифровой ответ без каких либо промежуточных операций. Лишь в отдельных случаях, определяемых условиями задачи, решение ее может быть выполнено в общем виде.

Все контрольные задачи следует решать в системе СИ. В соответствии с этим линейные размеры выражаются в м, плотность жидкости ρ в кг/м³, а давление в Па или H/м² или в барах (1бар=10⁵H/м²).

В связи с тем, что в производственных и лабораторных условиях давление может измеряться в других различных единицах: $\kappa\Gamma/\text{cm}^2$; $\kappa\Gamma/\text{m}^2$; м вод. ст.; мм рт. ст., необходимо знать соотношения между различными единицами измерения давления и уметь переводить давление из одних в другие.

Решению большинства задач помогает правильно и четко составленный чертеж-схема. На такой схеме должны быть показаны плоскость сравнения, плоскость равного давления, нивелирные высоты, определяющие положение характерных точек. Кроме того, на чертеже должны быть показаны сечения, к которым при решении задачи применены те или иные уравнения. Эти сечения должны быть обозначены соответствующими цифрами «1», «2» и так далее. В каждом из таких сечений давление, скорость, плотность температура и др. обозначаются буквами с индексами по нумерации сечения.

При решении большинства задач по гидрогазодинамике необходимо строить напорные и пьезометрические линии, по которым можно проследить, как изменяются полное давление или полный напор и статическое давление или гидродинамический напор в том или ином сечении потока, перемещающегося по трубопроводу или газопроводу. Эти линии строятся на чертеже-схеме, сопутствующей решению поставленной задачи.



4.2.1. Примеры решения задач

Задача 1. Для измерения газа в баллоне применен двухжидкостный чашечный манометр, диаметры чашечек которого одинаковы и равны D, а диаметр трубок d. Манометр заполнен ртутью (ее относительная плотность $\delta_{\rm pt}=13,6$) и водой, объем которой одинаков в правой и левой

частях манометра. Определить абсолютное давление газа в баллоне и вакуум, если разность уровней ртути h=20см, отношение диаметра трубки и диаметра чашки d/D=0,1, плотность воды $\rho=1000$ кг/м 3 и атмосферное давление $P_a=750$ мм рт.ст.

Решение. Вода и ртуть в манометре находятся в равновесии под действием разности давлений P_a и P на

поверхностях воды в чашечках манометра. При этом, пренебрегая изменением давления в столбе газа (ввиду его малой плотности), считая давление P равным давлению газа в баллоне.

При решении задачи применяем уравнение гидростатики, записывая его в виде

$$P = P_0 + \rho g h,$$

и, прежде всего, определяем плоскость, в которой в правой и левой трубках манометра давление будет одинаковым. Такой горизонтальной плоскостью является плоскость 1-1, давление в которой обозначим P_1 . Это давление справа (согласно основному закону гидростатики) определяется атмосферным давлением P_2 на поверхности воды в правой чашечке манометра и давлением, которое создает столб воды высотой $h_1 + h$, т.е. $P_1 = P_2 + \rho g(h_1 + h)$ Па — уравнение 1.

Давление P_1 слева уравновешивается давлением P_2 на поверхности воды в левой чашечке манометра, давлением, создаваемым столбом воды высотой $\Delta h + h_1$, и давлением, которое создает столб ртути высотой h. Таким образом, $P_2 = P + \rho g(\Delta h + h_1) + \rho_{DT}gh$ Πa — уравнение 2.

Из уравнений (1) и (2) получаем:

$$P + \rho g \Delta h + \rho g h_1 + \rho_{DT} g h = P_a + \rho g h_1 + \rho g h$$

Взаимно уничтожив $\rho g h_1$ в правой и левой частях уравнения, определяем давление P газа в баллоне:

$$P = P_a + gh(\rho - \rho_{pT}) - \rho g\Delta h$$
, Πa .

Превышение уровня воды в левой чашечке манометра Δh над уровнем в правой определяем из условия равенства объемов воды в правой и левой частях манометра:

$$\frac{\pi}{4}D^2\Delta h = \frac{\pi}{4}d^2h,$$

откуда

$$\Delta h = hd^2 / D^2 = 0.2(\frac{1}{10})^2 = 0.002 \text{ M}.$$

Атмосферное давление P_a , выраженное по условию задачи в мм рт. ст. переводим в Па. Оно будет равно

$$P_{\rm a} = g \cdot 10150 \; \Pi {\rm a}.$$

Плотность ртути ρ_{pT} можно определить в зависимости от ее относительной плотности

$$\delta_{pT} = \rho_{pT}/\rho$$

и плотности воды

$$\rho_{pT} = \delta_{pT} \times \rho = 13,6 \cdot 1000 = 13600 \text{ kg/m}^3.$$

Определяем численное значение давления газа в баллоне:

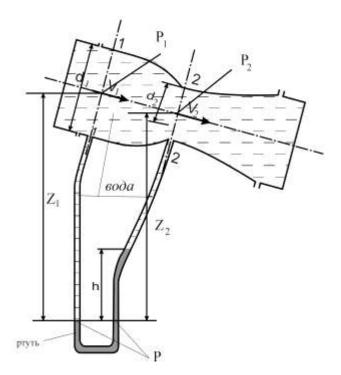
$$P = g[10150 + 0.2(1000 - 13600) - 1000 \cdot 0,002] = g \cdot 7630 \,\Pi a = 7630 \,\kappa\Gamma/\text{M}^2 = 7,63 \,\text{м}$$
 вод. ст.

Разрежение в баллоне (вакуум)

$$P_{\text{Bak}} = P_{\text{a}} - P = gh(\rho_{\text{pT}} - \rho) + \rho g\Delta h = g[0, 2(13600 - 1000) + 1000 \cdot 0, 002] =$$

= $g \cdot 2520 \text{Πa} = 2520 \text{ k}\Gamma/\text{m}^2$.

Примечание: при решении задач удобно плотность воды обозначить буквой ρ без каких-либо индексов, а плотность других жидкостей той же буквой с соответствующим индексом.



Задача 2. Определить расход воды, проходящей через расходомер Вентури, если разность уровней, показываемая дифференциальным ртутртутным манометром, h = 600 мм. Больший и меньший диаметры водомерной трубы соответственно равны $d_1 = 200$ мм, $d_2 = 75$ мм.

Решение. Эта задача является одной из типовых задач гидродинамики одномерных потоков (гидравлики). Решение таких задач базируется на совместном применении уравнения Бернулли и уравнения расхода.

Составляем уравнение Бернулли для сечений 1–1 и 2–2:

$$z_1 + P_1/\rho g + V_1^2/2g = z_2 + P_2/\rho g + V_2^2/2g + h_{w1-2}z_1$$
 (м ст. жидк.), (1a) где z_1 и z_2 – нивелирные высоты центров сечений;

 P_1 и P_2 – давление в этих точках;

 V_1 и V_2 — средние по сечениям скорости;

 h_{w1-2} — потери напора, возникающие при перемещении потока от сечения 1—1 до сечения 2—2. Этими потерями (в порядке первого приближения) можно пренебречь, так как расстояние между сечениями невелико и потери на трение будут незначительными. Если форма проточных каналов расходомера исключает отрыв потока от стенок, то незначительными будут и местные потери напора.

Чтобы сократить число неизвестных в уравнении (1a) выразим скорость V_1 через V_2 по уравнению расхода:

$$Q = V_1 F_1 = V_2 F_2$$

ИЛИ

$$V_1 \frac{\pi}{4} d_1^2 = V_2 \frac{\pi}{4} d_2^2,$$

T.e.

$$V_1 = V_2 d_2^2 / d_1^2.$$

С учетом этого, после ряда преобразований уравнение (1a) можно записать в виде:

$$z_1 - z_2 + (P_1 - P_2) / \rho g = V_2^2 / 2g[1 - (d_2 / d_1)^4]$$
, м вод. ст. (1)

Из этого уравнения можно определить скорость V_2 и, следовательно, расход Q, если известна разность статических напоров (потенциальных энергий) в сечениях 1-1 и 2-2, т.е. левая часть уравнения (1).

При определенном расходе жидкости, проходящей через расходомер, движение будет установившемся, а скорости (средние по сечениям) и давления в каждом из сечений будут постоянными. В соответствии с этим, неизменной будет и разность уровней ртути в дифференциальном манометре, подключенном к расходомеру. В горизонтальной плоскости, разделяющей воду и ртуть давление в правой и левой трубках манометра будет одинаковым, обозначим его P.

По уравнению гидростатики

$$P = P_1 + \rho g z_1$$

И

$$P = P_2 + \rho g(z_2 - h) + \rho_{pT}gh$$
,

ИЛИ

$$P_1 + \rho g z_1 = P_2 + \rho g z_2 - \rho g h + \rho_{pT} g h.$$
 (2a)

Разделив каждый из членов уравнений (2a) на ρgh и проведя перегруппировку членов, получим:

$$z_1 - z_2 + (P_1 + P_2) / \rho g = h(\rho_{pT} - \rho)/\rho$$
, м вод. ст. (2)

Сопоставляя уравнения (1) и (2), получим:

$$\frac{V_2^2}{2g} \left[1 - \left(\frac{d_2}{d_1} \right)^4 \right] = h \frac{(\rho_{\text{pT}} - \rho)}{\rho},$$

откуда

$$V_2 = \sqrt{\frac{2gh(\rho_{\rm pT} - \rho)}{\rho \left[1 - \left(\frac{d_2}{d_1}\right)^4\right]}} = \sqrt{\frac{29,8[0,6(136000 - 1000)]}{1000 \left[1 - \left(\frac{75}{200}\right)^4\right]}} = 12,5 \text{ m/c}.$$

Определяем расход жидкости через расходомер и трубопровод

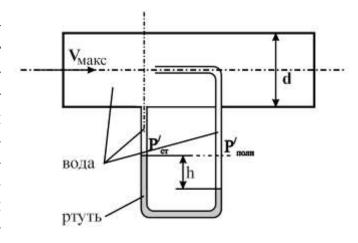
$$Q = V_2 F_2 = V_2 (\pi / 4) d_2^2 = 12,5 \cdot (3,14/4) \cdot 0,75^2 = 0,053 \text{ m}^3/\text{c} = 53 \text{ J}/\text{c}.$$

Расход с учетом потерь напора в расходомере можно определить по формуле:

$$Q = \frac{F_2}{\sqrt{1+\zeta}} \sqrt{\frac{2gh(\rho_{\text{pT}} - \rho)}{\rho \left[1 - \left(\frac{d_2}{d_1}\right)^4\right]}} = \varphi F_2 \sqrt{\frac{2gh(\rho_{\text{pT}} - \rho)}{\rho \left[1 - \left(\frac{d_2}{d_1}\right)^4\right]}}$$

или

$$Q = c\sqrt{h}$$
.


Здесь: ζ – коэффициент сопротивления расходомера;

$$\varphi = \frac{1}{\sqrt{1+\zeta}}$$
 – коэффициент скорости;

$$C = \varphi F_2 \sqrt{\frac{2g(\rho_{\rm pr} - \rho)}{\rho \left[1 - \left(\frac{d_2}{d_1}\right)^4\right]}}$$
 — постоянная расходомера, определяемая,

обычно, опытным путем.

Задача 3. По трубопроводу диаметром $d=150\,\mathrm{mm}$ протекает $250\,\mathrm{m}^3$ /час воды, плотность которой $\rho=1\,\mathrm{T/m}^3$, а кинематический коэффициент вязкости $v=1,5\cdot 10^{-6}\,\mathrm{m}^2/\mathrm{c}$. Определить, какую разность уровней ртути покажет дифференциальный ртутный манометр, присоединенный к напорной трубке, установленной на оси трубы ($\rho_{\mathrm{pt}}=13,6\,\mathrm{T/m}^3$).

Решение. С помощью напорной трубки и присоединенного к ней манометра можно определить скорость в той точке потока, где установлена трубка. В нашем случае определяется максимальная скорость в центре трубопровода по каналу, соединяющему отверстие в центре трубки с дифманометром, на последний передается полный напор (полное давление потока $P_{\text{полн}}$). Через отверстия в стенке трубопровода в сечении, где установлена трубка, на дифманометр передается потенциальный (статический) напор. Разница полного и потенциального напоров определяет скоростной (динамический) напор

$$H_{\text{ЛИН}} = H_{\text{ПОЛН}} - H_{\text{СТ}}$$

по которому можно найти скорость

$$V = \sqrt{2gH_{\text{дин}}}$$
.

В потоке сжимаемой жидкости скорость, обычно, определяют по динамическому давлению

$$P_{\text{ЛИН}} = \rho V^2 / 2$$
.

Последнее равно разнице полного и статического давлений

$$P_{\text{дин}} = P_{\text{полн}} - P_{\text{ст}}$$
.

Таким образом удобно определять скорость в потоке несжимаемой жидкости, когда к напорной трубке присоединен дифференциальный манометр, а не пьезометры.

В дифманометре ртуть и вода находятся в равновесии под действием разности давлений $P^1_{\text{полн}}$ и $P^1_{\text{ст}}$ в плоскости раздела между ртутью и водой в левой трубке манометра. Разность таких давлений можно считать равной разнице полного $P_{\text{полн}}$ и статического $P_{\text{ст}}$ давлений на оси трубопровода, так как

$$P_{\text{полн}}^{1} = P_{\text{полн}} + \rho g h_{1},$$

a

$$P_{\rm CT}^1 = P_{\rm CT} + \rho g h_1,$$

т.е.

$$P_{\text{полн}}^1 - P_{\text{ст}}^1 = P_{\text{полн}} - P_{\text{ст}}.$$

В соответствии с этим, динамическое давление

$$P_{\text{дин}} = P_{\text{полн}} - P_{\text{ст}}$$

можно определить так:

$$P_{\text{дин}} = gh(\rho_{\text{рт}} - \rho)$$
.

Поэтому разность уровней ртути h в трубках манометра можно определить, если известно $P_{\text{дин}}$ или скорость, которая будет максимальной в центре трубопровода, где установлена трубка.

Условия задачи позволяют определить среднюю по сечению скорость:

$$V = \frac{Q}{F} = \frac{4Q}{\pi d^2} = \frac{4 \cdot 250}{3.14 \cdot 0.15^2 \cdot 3600} = 3.93 \,\text{m/c}.$$

Чтобы определить максимальную скорость $V_{\rm Makc}$, нужно знать коэффициент поля скоростей

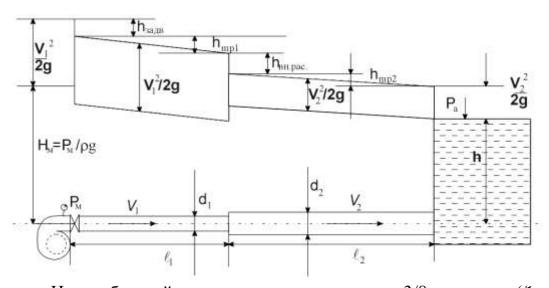
$$K_n = V_{\rm cp} / V_{\rm make}$$
,

который зависит от режима движения жидкости. Для этого подсчитаем число Рейнольдса:

$$Re = Vd / v = 3.93 \cdot 0.15 / 10^{-6} = 390000 > 2300 -$$
режим турбулентный.

При турбулентном режиме коэффициент поля скоростей можно определить по известной формуле:

$$K_n = V_{\rm cp} / V_{\rm Makc} = \text{Re}^{1/38} 1,64 = 390000^{1/38} / 1,64 = 0,855,$$


а максимальная скорость в центре трубопровода

$$V_{\text{Makc}} = V_{\text{cp}} / K_n = 3.93 / 0.855 = 4.6 \text{ M/c}.$$

Разность уровней ртути в трубках дифманометра

$$h = \frac{P_{\text{ДИН}}}{g(\rho_{\text{рт}} - \rho)} = \frac{\rho V_{\text{МАКС}}^2}{2g(\rho_{\text{рт}} - \rho)} = \frac{1000 \cdot 4,6^2}{2 \cdot 9,81(13600 - 1000)} = 0,0856 \,\text{M}.$$

Задача 4.

Центробежный насос через прикрытую на 3/8 задвижку ($\zeta=0.81$) и состоящий из двух участков трубопровод ($d_1=200$ мм, $\ell_1=10$ м, $d_2=250$ мм, $\ell_2=40$ м — загрязненные трубы с эквивалентной шерохо-

ватостью $\Delta = 1$ мм) подает воду в бассейн, уровень в котором на H=5м выше оси нагнетательного патрубка насоса. Каково показание манометра, присоединенного к нагнетательному патрубку насоса, если его подача Q = 110 л/с, а температура воды 20^{0} С и кинематический коэффициент вязкости $v = 1,01 \cdot 10^{-6}$ м²/с. Построить напорную и пьезометрическую линии.

Решение. 1. Запишем уравнение Бернулли для сечений 1–1 и 2–2:

$$z_1 + \frac{P_1}{\rho g} + \frac{V_1^2}{2g} = z_2 + \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + h_{W1-2}$$
, м вод. ст. (1a)

Если плоскость сравнения провести через ось трубопровода, то $z_1 = 0$, а $z_2 = h$. Абсолютное давление в сечении 1-1

$$P_1 = P_a + P_M$$

так как манометр измеряет избыточное давление равное разнице абсолютного и атмосферного, а давление в сечении 2–2 равно атмосферному $P_2 = P_a$, скорость в том же сечении можно принять равной нулю $(V_2 = 0)$. С учетом отмеченного, уравнение 1а принимает вид:

$$\frac{P_{\rm a}}{\rho g} + \frac{P_{\rm M}}{\rho n} + \frac{V_1^2}{2g} = h + \frac{P_{\rm a}}{\rho g} + h_{W1-2}.$$

Уничтожив $P_a/\rho g$ в правой и левой частях этого уравнения, получим:

$$\frac{P_{\rm M}}{\rho g} = h + h_{W1-2} - \frac{V_1^2}{2g}$$
, м вод. ст.

ИЛИ

$$P_{M} = \rho g (h + h_{W1-2} - \frac{V_{1}^{2}}{2g}), \Pi a.$$

Таким образом, показание манометра, установленного на выходе из нагревательного патрубка насоса можно определить, если будут известны скорость V_1 и потери напора в трубопроводе, установленном за насосом.

2. Определяем скорости на 1-ом и 2-ом участках трубопровода:

$$V_1 = \frac{4Q}{\pi d_1^2} = \frac{4 \cdot 0.11}{3.14 \cdot 0.2^2} = 3.5 \text{ m/c}, \qquad V_2 = \frac{4Q}{\pi d_2^2} = \frac{4 \cdot 0.11}{3.14 \cdot 0.25^2} = 2.24 \text{ m/c}.$$

3. Определяем коэффициенты сопротивлений местные и трения:

коэффициент сопротивления задвижки ζ =0,81 — по условию задачи; коэффициент внезапного расширения можно определить по формуле

$$\varsigma_{\text{вн.расш.}} = \left(\frac{F_2}{F_1} - 1\right)^2 = \left[\left(\frac{d_2}{d_1}\right)^2 - 1\right]^2 = \left[\left(\frac{0.25}{0.2}\right)^2 - 1\right]^2 = 0.314.$$

Коэффициенты трения λ_1 и λ_2 зависят от относительной шероховатости стенок трубопровода и соответствующих чисел Рейнольдса:

Re₁ =
$$\frac{V_1 d_1}{v}$$
 = $\frac{3.5 \cdot 0.2}{1.01 \cdot 10^{-6}}$ = 7.0 · 10⁵, $\overline{\Delta}_1$ = $\frac{\Delta}{d_1}$ = $\frac{1}{200}$ = 0.005;

$$\operatorname{Re}_2 = \frac{V_2 d_2}{v} = \frac{2,24 \cdot 0,25}{1,01 \cdot 10^{-6}} = 5,61 \cdot 10^5, \quad \overline{\Delta}_2 = \frac{\Delta}{d_2} = \frac{1}{250} = 0,004.$$

По графику Мурина при Re_1 и $\overline{\Delta_1}$ коэф. трения $\lambda_1=0{,}0304;$ при Re_2 и $\overline{\Delta_2}$ коэф. трения $\lambda_2=0{,}0283.$

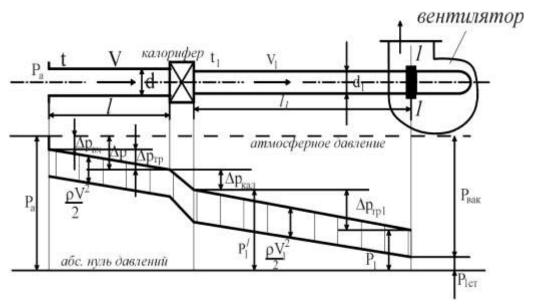
4. Определяем потери напора в трубопроводе. Эти потери включают местные: в задвижке, при внезапном расширении трубопровода и на выходе из трубопровода в бассейн, а также потери напора на трение на первом и втором участках:

$$h_{W1-2} = (\varsigma_{3 \text{адв}} + \lambda_1 \frac{l_1}{d_1}) \frac{V_1^2}{2g} + (\varsigma_{\text{вн.расш.}} + \lambda_2 \frac{l_2}{d_2} + \varsigma_{\text{вых}}) \frac{V_2^2}{2g},$$
 м вод. ст.,

$$h_{W1-2} = (0.81 + 0.0304 \frac{10}{0.2}) \cdot \frac{3.5^2}{2 \cdot 9.8} + (0.314 + 0.028 \frac{40}{0.25}) \frac{2.24^2}{2 \cdot 9.8} = 2.95 \text{ m}.$$

5. Определяем численное значение избыточного давления (показание манометра) на выходе из нагнетательного патрубка насоса

$$P_{\rm M} = g1000(5 + 2, 5 - \frac{3,5^2}{2 \cdot 9,8}) = g \cdot 7326 \,\Pi{\rm a} = 7326 \frac{{\rm \kappa}\Gamma}{{\rm m}^2} = 0,7326 \frac{{\rm \kappa}\Gamma}{{\rm cm}^2}.$$


6. Построение напорной и пьезометрической линии выполнено в соответствии с изложенным в гл. 11 и 111 учебного пособия Ю.Н. Соколова «Гидродинамическое пособие и расчет трубопроводов» и показано на чертеже к задаче.

Задача 5.

Воздух в количестве $Q = 14400 \text{ м}^3/\text{час}$ при атмосферном давлении $P_{\rm a}$ = 740 мм рт. ст. и температуре $t=20^{\rm o}{\rm C}$ засасывается вентилятором в трубопровод диаметром d=400 мм и длиной ℓ =20 м, затем проходит калорифер, падение давления в котором составляет 100 мм вод. ст. Нагретый в калорифере до $t_1 = 80^{\circ}$ С воздух через трубопровод диаметром $d_1 = 350$ мм и $\ell_1 = 40$ м поступает к вентилятору. Определить разрежение перед последним, пренебрегая охлаждением воздуха через стенки трубопроводов, если плотность воздуха при нормальных физических условиях ($t_0 = 0^{\circ}$ C, $P_0 = 760$ мм рт. ст и $\varphi = 50\%$) $\rho_0 = 1,293$ кг/м³. Кинемакоэффициент вязкости воздуха тический при 20° C равен $v = 1,57 \cdot 10^6 \text{ м}^2/\text{c}$, а при $80^0\text{C} - v = 21,7 \cdot 10^{-6} \text{ m}^2/\text{c}$.

Решение. В задаче рассматривается газопровод с теплообменом. При этом интенсивный теплообмен происходит в калорифере, а в трубопроводах до и после него имеется незначительное изменение не только давления, но и температуры. На каждом из этих участков, следовательно, плотность газа можно приблизительно считать неизменной и равной ее значению при входе на каждый участок. В соответствии с этим, неизменной считается и скорость воздуха на участке воздухопровода до калорифера и от калорифера до вентилятора.

Учитывая отмеченное, определяем плотность воздуха на участке от входа в воздухопровод до калорифера, считая ее равной плотности воздуха перед входом в воздухопровод. Запишем уравнение состояния идеальных газов Клайперона для нормальных физических условий:

$$P_0 / \rho_0 = RT_0$$

и условий входа в воздухопровод:

$$P_a/\rho = R$$
.

Разделив одно из этих уравнений на другое, получим:

$$\rho = \rho_0 \cdot \frac{T_0 P_a}{T P_0} = 1,293 \cdot \frac{273 \cdot 740}{(273 + 20) \cdot 760} = 1,172 \,\text{kg/m}^3.$$

Объемный расход воздуха на участке воздухопровода от входа до калорифера можно считать неизменным (так как здесь $\rho={\rm const}$ и $F={\rm const}$) и равным расходу Q, заданном при $P_{\rm a}$ и t. Поэтому скорость на этом участке воздухопровода

$$V = \frac{4Q}{\pi d^2} = \frac{4 \cdot 14400}{3,14 \cdot 0,4^2 \cdot 3600} = 31,87 \,\text{m/c}.$$

На участке воздухопровода до калорифера возникают потери давления при входе в трубопровод и потери на трение. Коэффициент сопротивления при входе $\zeta_{\rm Bx}$ = 1 (находим по справочнику). Коэффициент трения λ =0,025 определяем по графику Мурина в зависимости от относительной шероховатости стенок воздухопровода

$$\overline{\Delta} = \frac{\Delta}{d} = \frac{0.8}{400} = 0.002$$

и от числа Рейнольдса

Re =
$$\frac{Vd}{v} = \frac{31,87 \cdot 0,4}{15,7 \cdot 10^{-6}} = 8,1 \cdot 10^{5}.$$

Потери давления в воздухопроводе до калорифера

$$\Delta P = (\zeta_{\text{BX}} + \lambda \frac{\ell}{d}) \cdot \rho \frac{V^2}{2} = (1 + 0.025 \cdot \frac{20}{0.4}) \cdot 1.172 \frac{31.87^2}{2} = 1344 \text{ H/m}^2.$$

Давление на выходе из калорифера ($P_a = 740 \text{ мм рт. ст.} = 98700 \text{ H/м}^2$).

$$P_1^{\prime} = P_{\rm a} - \Delta P - \Delta P_{\rm KBJI} = 98700 - 1344 - 981 = 96375 \,\mathrm{H/m}^2$$
.

Плотность воздуха за калорифером (в воздухопроводе от калорифера до вентилятора)

$$\rho_1 = \rho_0 \cdot \frac{T_0 P_1^{/}}{T P_0} = 1,293 \cdot \frac{273 \cdot 96375}{(273 + 80) \cdot 101300} = 0,952 \text{ kg/m}^2.$$

Скорость воздуха здесь определяем по уравнению расхода

$$m = \frac{\rho V \pi d^2}{4} = \frac{\rho_1 V_1 \pi d_1^2}{4},$$

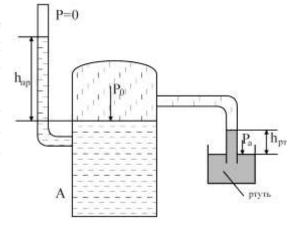
откуда

$$V_1 = V \frac{\rho}{\rho_1} \cdot (\frac{d}{d_1})^2 = 31,87 \cdot \frac{1,17}{0,952} \cdot (\frac{0,4}{0,35})^2 = 51,2 \text{ m/c}.$$

Потери давления на трение в воздухопроводе от калорифера до вентилятора

$$\Delta P_{\text{Tp}_1} = \lambda_1 \cdot \frac{\ell_1}{d_1} \cdot \rho_1 \cdot \frac{V_1^2}{2} = 0,026 \cdot \frac{40}{0,35} \cdot 0,952 \cdot \frac{51,2^2}{2} = 3700 \text{ H/m}^2,$$

при этом $\operatorname{Re}_1 = V_1 d_1 / v_1 = 8,26 \cdot 10^5$, $\overline{\Delta_1} = \Delta / d_1 = 0,00228$ и $\lambda_1 = 0,026$. Разрежение (вакуум) при входе в вентилятор (в сечении 1–1)


$$P_{\text{вак}} = \Delta P + \Delta P_{\text{кал}} + \Delta P_{\text{тр}_1} + \rho_1 \frac{V_1^2}{2} = 1344 + 981 + 3700 + 0,952 \frac{51,2^2}{2} =$$

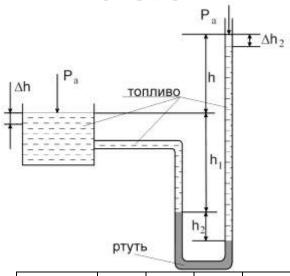
= 7270 H/m² = 740 кГ/m².

4.2.2. Задачи для выполнения в ИДЗ

Задача 1. Определить в технической системе и в системе СИ плотность дымовых газов $\rho_{\rm д}$, покидающих печь при температуре $t^0{\rm C}$ и давлении $P=735\,$ мм рт. ст., если удельный вес их при $t_0=0^0{\rm C}$ и давлении $P_0=760\,$ мм рт. ст. составляет γ_0 к $\Gamma/{\rm M}^3$?

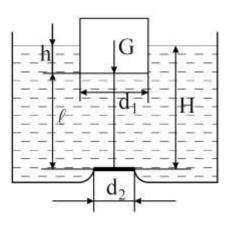
Вари-	1	2	3	4	5	6	7	8	9	10
$\gamma_{0,\kappa\Gamma/M}^{3}$	1,23	1,24	1,25	1,26	1,27	1,28	1,29	1,3	1,31	1,32
T , ${}^{0}C$	300	350	400	450	500	550	600	650	700	750

Задача 2. Определить абсолютное давление воздуха P_0 на поверхности воды в резервуаре A и высоту поднятия воды в закрытом пьезометре $h_{\rm np}$, присоединенном к этому резервуару, если показание ртутного вакуумметра $h_{\rm pr}$, а атмосферное давление $P_{\rm a}$.



Вариант	1	2	3	4	5	6	7	8	9	10
$h_{ m pt}$,MM	300	310	320	330	340	350	360	370	380	400
$P_{\rm a}$, мм рт ст	733	735	738	740	745	748	750	755	758	760

Задача 3. Для передачи наверх и контроля уровня топлива в открытом подземном резервуаре использован дифференциальный манометр, за-



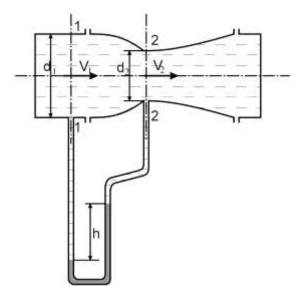
полненный ртутью, плотность которой $\rho_{\rm pr} = 13,6$ т/м³. Определить высоту столба ртути h_2 , если разность уровней топлива в указателе и резервуаре h м. Как изменится положение уровня в указателе при понижении уровня топлива в резервуаре на Δh м?

Примечание: высота столба топлива в правой трубке манометра считается неизменной при любом уровне топлива в резервуаре.

Вариант	1	2	3	4	5	6	7	8	9	10
$\rho_{\rm T}$, ${\rm T/M}^3$	0,72	0,75	0,79	0,85	0,89	0,85	0,79	0,75	0,73	0,72
<i>h</i> , м	8	7	6	5	4	4	5	6	7	8
Δh , M	2	2	1,5	1,5	1,0	1,0	1,5	1,5	2,0	2,0

Задача 4. На дне резервуара с бензином имеется круглый клапан диаметром d_2 , который прикреплен тягой к цилиндрическому поплавку диаметром d_1 . При превышении какого уровня бензина H откроется клапан, если вес поплавка и клапана G, длина тяги ℓ , а плотность бензина $\rho_6 = 0.73$ т/м³.

Вари- ант	1	2	3	4	5	6	7	8	9	10
d_1 , MM	100	125	150	175	200	250	200	175	150	125
d_2 , MM	20	30	50	60	70	65	55	45	40	35
ℓ , MM	140	160	180	200	220	210	200	190	180	170
G , Γ	100	150	200	250	300	350	300	250	200	150



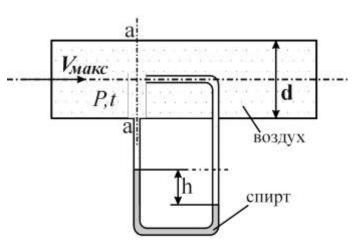
Задача 5. Определить, потенциальным или вихревым будет движение жидкости, заданное проекциями скоростей u_x , u_y , u_z . Найти функцию потенциала скорости ϕ и уравнение линии тока, если движение потенциальное, найти составляющие угловой скорости вращения ω_x , ω_y , ω_z , если движение вихревое.

Вари ант	1	2	3	4	5	6	7	8	9	10
u_x	-ay	-2 <i>ay</i>	by	2by	x+t	ax/R^3	bx/R^3	axy	bxy	cxy
u_{y}	ax	2ax	-bx	-2bx	-y+t	ay/R^3	by/R^3	ayz	byz	cyz
u_z	0	0	0	0	0	az/R^3	bz/R^3	axz	bxz	cxz

Примечание: a,b,c,- постоянные величины. $R = \sqrt{x^2 + y^2 + z^2}$.

Задача 6. Для измерения расхода бензина, плотность которого $\rho_6 = 0.73 \text{ т/m}^3$, на трубопроводе диаметром d_1 установлен расходомер Вентури. Диаметр суженной части расходомера d_2 . Определить, пренебрегая сопротивлениями, расход бензина Q м 3 /с, если разность уровней в дифференциальном манометре, присоединенном к расходомеру, равна h.

Вари- ант	1	2	3	4	5	6	7	8	9	10
d_1 , MM	350	350	350	350	350	350	350	350	350	350
d_2 , MM	150	150	150	110	110	110	100	100	100	100
h, MM	150	200	250	300	400	500	600	650	700	750



Задача 7. Напорная трубка (трубка Пито) установлена на оси газопровода диаметром d, по которому перетекает воздух. Его плотность при нормальных физических условиях (t_0 =0°C, P_0 =760 мм рт. ст. и ϕ =50 %) ρ_0 =1,293 кг/м³, а динамический коэффициент вязкости (при t_0 =0°C) μ =17,3·10⁻⁶ H·c/м².

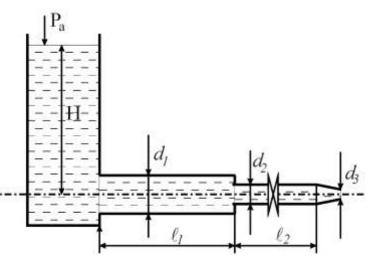
Показание спиртового дифференциального манометра, присоединенного к напорной трубке, равно h. Определить объемный расход воздуха, если избыточное давление воздуха в сечении а–а P ати, температура t 0 C, а плотность спирта ρ_{cn} = 0,8 т/м 3 .

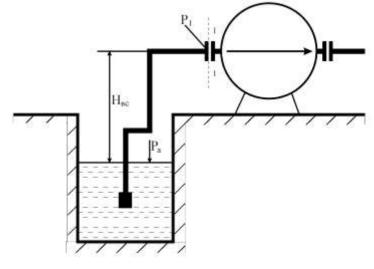
Примечание: Динамический коэффициент вязкости газа при любой температуре вычисляется по формуле:

$$\mu_t = \mu_0 \frac{1 + C/273}{1 + C/t} \sqrt{\frac{t}{273}},$$

где постоянная воздуха C = 124.

При изменении числа Рейнольдса от 10^5 до 10^6 , можно считать, что коэффициент поля скоростей $K_{\rm n} = V_{\rm cp}/V_{\rm макс}$ увеличивается от 0,83 до 0,87.

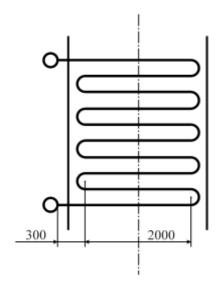

Вари- ант	1	2	3	4	5	6	7	8	9	10
d, MM	400	400	350	350	300	300	250	250	200	200
h, MM	28	27	26	25	24	23	22	21	20	19
<i>P</i> , ати	2,2	2,1	2,0	1,9	1,8	1,7	1,6	1,5	1,4	1,3
t, ⁰ C	25	24	23	22	21	20	19	18	17	16


Задача 8. Из открытого бака больших размеров вытекает расход воды QПО горизонтальному трубопроводу, состоящему из двух участков длиной ℓ_1 диаметром d_1 и длиной ℓ_2 диаметром d_2 . Трубопровод заканчивается конически сходящимся патрубком d_3 , Ha середине второго

участка имеется задвижка. Определить необходимый напор в баке с учетом потерь местных и на трение при известных коэффициентах сопротивлений: $\zeta_{\rm BX} = 0.5$; $\zeta_{\rm Hac} = 0.1$; $\zeta_{\rm 3adb} = 2.5$; $\zeta_{\rm BH.cyx.} = 0.5~(1-d_2^{\ 2}/d_1^{\ 2})$, считая движение установившемся ($H = {\rm const}$). Построить напорную и пьезометрическую линии.

Вари- ант	1	2	3	4	5	6	7	8	9	10
<i>Q</i> , л/с	25	30	35	40	45	55	60	65	70	75
d_1 , MM	150	150	175	175	200	200	225	250	275	300
$d_{2,MM}$	125	125	150	150	175	175	200	225	250	275
d_3 , MM	100	100	125	125	150	150	175	175	200	200
λ_1	0,032	0,28	0,03	0,026	0,024	0,022	0,02	0,019	0,018	0,017
λ_2	0,03	0,028	0,026	0,024	0,022	0,019	0,018	0,017	0,016	0,015
ℓ_1 , M	25	28	30	32	35	38	40	42	45	48
ℓ_2 , M	10	12	14	16	18	20	22	24	26	28

Задача 9. Центробежный насос забирает воду из колодца в количестве Q л/с. Всасывающая труба насоса длиной ℓ и диаметром d снабжена предохранительной сеткой и обратным клапаном ($\zeta_{\rm кл} = 10$) и имеет три поворота ($\zeta_{\rm пов} = 0,29$). Определить допустимую высоту всасывания насоса



 $H_{\rm BC}^{\rm доп}$ = ?), при которой вакуум во всасывающем патрубке насоса не превышал бы допустимого значения $h_{\rm Bak}^{\rm доп}$ = $P_{\rm Bak}^{\rm доп}/\rho g$.

Коэффициент трения определить по графику Мурина, считая трубы стальными сварными.

Вари- ант	1	2	3	4	5	6	7	8	9	10
Q, л/с	80	90	100	110	120	130	140	160	180	200
d, MM	300	300	325	325	350	350	400	400	500	500
ℓ , M	12	14	16	18	20	22	24	26	28	30
$h_{ ext{вак}}^{ ext{всп}},$ м вод. ст	6	6	5,5	5,5	5	5	4,5	4,5	4	4

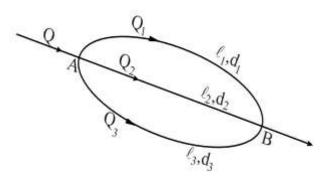
Примечание: абсолютное давление при входе во всасывающий патрубок насоса меньше атмосферного $P_1 < P_a$, поэтому $P_1 = P_a - P_{\text{вак}}$, где $P_{\text{вак}}$ – разрежение в сечении 1-1, а допустимый вакуум $h_{\text{вак}}^{\text{доп}} = P_{\text{вак}}^{\text{доп}} / \rho g$.

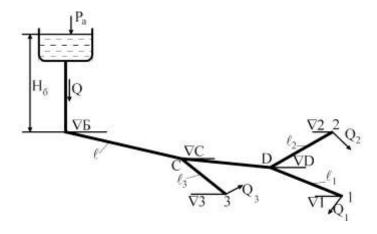
Задача 10. В водяном экономайзере парового котла, состоящем из 12 параллельно включенных пятипетлевых змеевиков, подогревается питательная вода в количестве m т/час от t_1 0 С до t_2 0 С. Определить гидравлическое сопротивление экономайзера, пренебрегая сопротивлением коллекторов, если диаметр труб d мм, шероховатость стенки 0,1 мм, длины прямых участков 2,0 м, а радиус закругления R=1,5 d. Сечение коллектора по сравнению с сечением трубы считать бесконечно большим. Коэффициент трения определить по графику Мурина, а коэффи

определить по графику Мурина, а коэффициент сопротивления при повороте на 90 0 – в зависимости от отношения R/d.

Вари- ант	1	2	3	4	5	6	7	8	9	10
<i>m</i> , т/час	90	95	100	105	110	115	120	125	130	135
d, MM	50	52	54	56	58	60	62	64	66	68
$t_1, {}^{0}C$	70	75	80	85	90	95	100	90	80	70
$t_2, {}^{0}C$	130	135	140	145	150	155	160	150	140	130

Примечание: При значительном изменении температуры воды, проходящей через экономайзер, заметно изменяется не только вязкость воды,

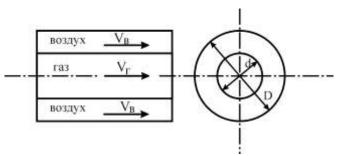



но и ее плотность. Поэтому при решении задачи плотность воды и ее кинематический коэффициент вязкости следует определить по средней температуре $t_{cp} = (t_1 - t_2)/2$.

Задача 11. На стальном трубопроводе с общим расходом Q л/с имеется участок с тремя параллельно включенными ветвями $\ell_1,d_1;\ \ell_2,\ d_2;\ \ell_3,\ d_3.$ Определить распределение расхода по отдельным ветвям и потери напора между узловыми точками H_{AB} .

Вари- ант	1	2	3	4	5	6	7	8	9	10
Q,л/сек	50	55	60	65	70	75	80	85	90	95
d ₁ ,мм	150	150	175	175	200	200	225	225	250	250
d ₂ ,мм	100	100	125	125	150	150	175	175	200	200
d ₃ ,мм	125	125	150	150	175	175	200	200	225	225
ℓ_1 ,м	100	1050	1100	1150	1200	1250	1300	1350	1400	1450
$\ell_{2,M}$	800	800	850	850	900	900	950	950	1000	1000
ℓ ₃ ,м	900	900	1000	1000	1100	1100	1200	1200	1300	1300

Задача 12. Рассчитать водопроводную сеть согласно схеме и определить минимальную высоту водонапорной башни $H_{\rm 5}$, если свободный напор у потребителей должен быть не меньше 10 м, а геодезические отметки соответствующих точек равны: $\nabla_{\rm 6} = 25$, $\nabla_{\rm c} = 21$, $\nabla_{\rm д} = 18$, $\nabla_{\rm 1} = 17$, $\nabla_{\rm 2} = 16$, $\nabla_{\rm 3} = 15$. Построить напорную линию.



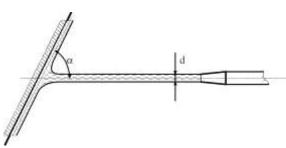
Вариант	1	2	3	4	5	6	7	8	9	10
Q_1 ,л/сек	20	22	24	26	28	30	28	26	24	22
Q_2 ,л/сек	10	12	14	16	18	20	18	16	14	12
Q_3 ,л/сек	15	17	19	21	23	25	23	21	19	17
ℓ , M	800	900	1000	1100	1200	1300	1400	1300	1200	1100
ℓ_1 , M	150	200	250	300	350	400	450	400	300	200
ℓ_2 , M	200	250	300	350	400	450	500	450	350	250
ℓ_3 , M	300	300	400	400	500	500	400	300	500	400
ℓ_4 , M	400	450	500	550	600	600	500	500	400	400

Задача 13. Горелка типа «труба в трубе» работает на газе и потребляет m_{Γ} кг/час газа. Воздух необходимый для горения газа в количестве 1,6 кг/кг газа имеет температуру $t_{\rm B}$ °C и подводится через кольцевое пространство горелки со скоростью $V_{\rm B}$ м/сек.

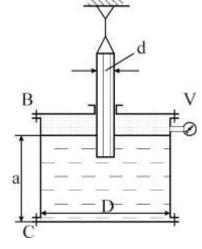
Определить размеры горелки и необходимое давление воздуха, если давление газа перед горелкой $\Delta P_{\Gamma} \, \kappa \Gamma / \text{m}^2$, а плотность газа $\rho_r = 0.98 \, \kappa \Gamma / \text{m}^3$. Коэффициент скорости и расхода принять равными $\phi = \mu = 0.82$, а плотность воздуха при нормальных условиях $\rho = 1.29 \, \kappa \Gamma / \text{m}^3$.

Вариант	1	2	3	4	5	6	7	8	9	10
$m_{\scriptscriptstyle \Gamma}$, кг/час	200	220	240	250	260	280	300	320	340	360
$t_{\rm B_{\rm i}}{}^{0}{\rm C}$	240	260	280	300	320	340	360	340	320	300
$V_{\rm B}$, м/сек	22	23	24	25	26	27	28	27	26	25
ΔP_{Γ} , κ Γ /м ²	100	110	120	130	140	150	140	130	120	110

Задача 14. По стальной трубе длиной ℓ и диаметром d протекает Q л/сек воды. Определить насколько повысится давление в трубе при закрытии задвижки, если время закрытия в первом случае 0,1 сек, а во втором случае 1,0 сек.


Вариант	1	2	3	4	5	6	7	8	9	10
Q, л/сек	50	55	60	65	70	75	80	85	90	100
d, MM	200	200	225	225	250	250	275	275	300	325
ℓ , M	100	120	140	160	180	200	180	160	140	120
Материал трубы		Стал	ьные т	рубы			Чугу	нные т	рубы	

Задача 15. Пожарный брандспойт представляет собой суживающуюся насадку с диаметром выходного сечения d, имеющую коэффициент сопротивления $\zeta = 0,1$ и коэффициент сжатия $\varepsilon = 0,85$. Определить расход воды и силу, с которой

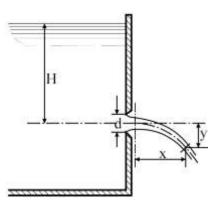

струя, выходящая из брандспойта, бьет в стену, расположенную под углом α к направлению струи, если давление воды, подводимой к брандспойту ΔP атм.

Вариант	1	2	3	4	5	6	7	8	9	10
d, MM	40	40	40	40	50	50	50	50	60	60
ΔP , atm	20	20	20	20	22	22	22	22	25	25
α, град	30	45	60	90	30	45	60	90	45	90

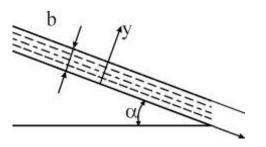
 $\it 3adaчa$ 16. Цилиндрический сосуд, имеющий диаметр $\it D$ и наполненный водой до высоты $\it a$, висит без трения на плунжере диаметром $\it d$.

Определить:

- 1. Вакуум V, обеспечивающий равновесие сосуда, если его собственный вес G. Как влияют на полученный результат величина диаметра плунжера и глубина его погружения в жидкость?
- 2. Силы давления, действующие на крышки B и C сосуда.



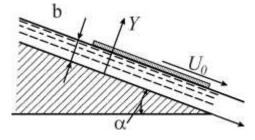
Вари- ант	1	2	3	4	5	6	7	8	9	10
D, M	0,38	0,39	0,4	0,41	0,42	0,41	0,4	0,39	0,38	0,37
<i>a</i> , M	0,3	0,31	0,32	0,33	0,34	0,35	0,36	0,37	0,38	0,39
d,M	0,15	0,16	0,17	0,18	0,19	0,2	0,19	0,18	0,17	0,16
G ,к Γ	45	46	47	48	49	50	51	53	54	55



Задача 17. Определить коэффициенты расхода, скорости и сопротивления при истечении воды в атмосферу через отверстие диаметром d под напором H, если расход Q, а координаты центра одного из сечений струи x = 3 м и y = 1,2 м.

Вари- ант	1	2	3	4	5	6	7	8	9	10
D, mm	7	8	9	10	11	10	9	8	7	6
Н, м	0,17	0,18	0,19	0,2	0,2	0,21	0,22	0,23	0,24	0,25
Q, л/сек	0,29	0,291	0,292	0,293	0,294	0,295	0,296	0,297	0,298	0,299

Задача 18. Слой жидкости (b = 3 мм, $v = 1,5 \cdot 10^{-4}$ м²/сек) равномерно движется под действием силы тяжести по наклонной плоскости, составляющей с горизонтом угол α .


Найти закон распределения скоростей в слое, а также определить расход жидкости, протекающей через поперечное сечение слоя, шириной $B=1\,\mathrm{cm}$.

Вариант	1	2	3	4	5	6	7	8	9	10
α , 0	11	12	13	14	15	15	14	13	12	11
B, cm	0,07	0,08	0,09	0,1	0,11	0,11	0,1	0,09	0,08	0,07

Задача 19. По слою жидкости, находящемуся на наклонной плоскости, перемещается параллельно последней пластинка с постоянной скоростью u_0 .

Найти закон распределения скоростей в слое жидкости и расход, определить касательное напряжение τ_0 на пла-

стинке, если известны u_0 , α , b, $\gamma = 900$ к $\Gamma/\text{м}^3$, и вязкость жидкости $\mu = 2$ пз.

Вари- ант	1	2	3	4	5	6	7	8	9	10
α , 0	11	12	13	14	15	15	14	13	12	11
u_0 ,м/сек	0,17	0,18	0,19	0,2	0,21	0,22	0,23	0,24	0,25	0,26
b, MM	0,45	0,46	0,47	0,48	0,49	0,5	0,49	0,48	0,47	0,46

4.2.3. Вопросы для ИДЗ

Тема 1. Кинематика и динамика пространственных потоков идеальной жидкости

- 1. За счет чего возникает линейная и угловая деформации и вращение элементарной частицы движущейся жидкости?
- 2. В каком случае движение считают потенциальным, а в каком вихревым?
- 3. Что называется потенциалом скорости, когда он существует и какими свойствами обладает?
- 4. Что называется функцией тока и в чем значение этого понятия при плоском потенциальном движении жидкости?
- 5. Циркуляция скорости. Теорема Стокса и ее значение в оценке интенсивности.
- 6. Каков физический смысл величин, входящих в дифференциальные уравнения Эйлера? Для какого движения и в какой жидкости справедливы эти уравнения?
- 7. Почему для решения основной задачи гидродинамики об определении давления и скорости в пространственном потоке несжимаемой идеальной жидкости достаточно четырех уравнений (каких именно), а в газодинамике необходимо вводить дополнительные условия?
- 8. Уравнение Бернулли для частицы идеальной несжимаемой жидкости движущейся вдоль линии тока под действием сил тяжести. В каком виде это уравнение применимо для газа?
 - 9. Энергетический смысл членов уравнения Бернулли.
 - 10. Геометрический смысл членов уравнения Бернулли.

Тема 2. Равновесие жидкости и газа

- 1. Дифференциальные уравнения равновесия Эйлера. Почему эти уравнения справедливы для идеальной и реальной жидкости?
- 2. Что называется поверхностью уровня в объеме жидкости, находящейся в состоянии равновесия? Дифференциальное уравнение поверхности уровня (поверхности равного давления).
- 3. Равновесие несжимаемой жидкости в поле сил тяжести. Основное уравнение гидростатики в дифференциальной и интегральной формах.
- 4. Равновесие сжимаемой жидкости в поле сил тяжести. Дифференциальное уравнение равновесия в этом случае. При каких условиях это дифференциальное уравнение может быть проинтегрировано?

- 5. Давление абсолютное и избыточное. Как с помощью пьезометров могут быть измерены эти давления?
- 6. Давление абсолютное и вакуумное (разряжение). Какие приборы могут быть применены для измерения вакуума?
 - 7. На чем основан принцип работы гидростатических машин?
- 8. Относительное равновесие жидкости, находящейся в сосуде, вращающемся с постоянной частотой вращения вокруг вертикальной оси.
- 9. Относительное равновесие жидкости, находящейся в сосуде, перемещающемся с постоянным ускорением по наклонной плоскости.
- 10. Как определяется сила давления жидкости на плоскую и криволинейную поверхность?

Тема 3. Динамика вязкой жидкости

- 1. Закон внутреннего трения Ньютона. При каком движении жидкости справедлив этот закон?
 - 2. Обобщенная форма записи закона внутреннего трения Ньютона.
- 3. Коэффициенты вязкости: кинематический и динамический, физический смысл последнего.
- 4. Какие компоненты тензора касательных напряжений сил вязкости действуют на гранях прямоугольного параллелепипеда, выделенного в потоке вязкой жидкости?
- 5. За счет чего возникают и как определяются нормальные напряжения сил вязкости в потоке несжимаемой жидкости? Какие компоненты нормальных напряжений сил вязкости действуют на гранях элементарного параллелепипеда, выделенного в таком потоке?
- 6. Как определяются нормальные напряжения сил вязкости в потоке вязкой жидкости?
- 7. Анализ слагаемых уравнений Навье Стокса. Условия однозначности.
- 8. Какие касательные и нормальные напряжения определяют проекцию сил вязкости на ось X?
- 9. Какие касательные и нормальные напряжения определяют проекцию сил вязкости на ось Y?
- 10. Какие касательные и нормальные напряжения определяют проекцию сил вязкости на ось *Z*?

Тема 4. Одномерные установившиеся потоки

- 1. Элементарная струйка, ее свойства (общие и при установившемся движении). Уравнение неразрывности (расхода) для элементарной струйки сжимаемой и несжимаемой жидкости.
- 2. Вычисление расхода жидкости через сечение одномерного потока конечных размеров. Средняя по сечению скорость потока. Уравнение неразрывности (расхода) для одномерного потока конечных потоков сжимаемой и несжимаемой жидкости.
- 3. Почему уравнение Бернулли, полученное для частицы идеальной несжимаемой жидкости, движущейся вдоль линии тока под действием сил тяжести, может быть распространено на элементарную струйку?
- 4. При каких условиях уравнение Бернулли для элементарной струйки идеальной несжимаемой жидкости может быть распространено на сечение потока конечных размеров? Уравнение Бернулли для равномерного потока конечных размеров реальной (вязкой) жидкости.
 - 5. Уравнение Бернулли для газа в механической и тепловой формах.
- 6. Уравнение энергии в общем случае и для энергетически изолированного потока.
 - 7. Полная энтальпия и температура торможения газового потока.
 - 8. Критическая скорость движения газа и скорость звука, число М.
- 9. Идеальное (изоэнтропическое) торможение газового потока. Давление торможения.
- 10. Уравнение количества движения для элементарной струйки и для одномерного потока конечных размеров.

Тема 5. Основы теории гидродинамического подобия

- 1. Какие системы считаются геометрически подобными? Отличие инварианты подобия от константы подобия.
- 2. Какие системы считаются кинематически подобными? Критерий кинематического подобия систем.
- 3. Какие системы считаются динамически подобными? Критерий динамического подобия систем.
- 4. Что называется критерием подобия? О чем говорит первая теорема подобия?
- 5. Почему нельзя обеспечивать гидродинамическое подобие по всем силам, действующим в жидкостях? Как получается критерий Fr, Eu и Re? Какие частные условия подобия определяют каждый из них?
- 6. Вторая теорема подобия. Критериальные зависимости. Критерии определяющие и определяемые.

- 7. Какая критериальная зависимость может быть получена приведением к безразмерной форме уравнений движения вязкой жидкости Навье Стокса? В чём практическое значение этой зависимости?
- 8. Основная критериальная зависимость и определяющий критерий при напорном движении в трубопроводах. Зависимость Eu(Re) при $Re \to 0$ и $Re \to \infty$.
- 9. Основная критериальная зависимость и определяющий критерий при безнапорном движении в открытых каналах и руслах.
- 10. Значение теории гидродинамического подобия при гидравлическом моделировании.

Тема 6. Режимы движения жидкости и гидравлические сопротивления

- 1. Местные гидравлические сопротивления, причины их возникновения и методика учета.
- 2. Гидравлические сопротивления трения, причины их возникновения и методика учета.
- 3. Закон скоростей и сопротивления при ламинарном режиме движения жидкости. Как можно в этом случае оценить коэффициент трения, и как эта оценка согласуется с выводами теории подобия?
- 4. Пульсация скоростей, осредненная местная и средняя по сечению скорости в турбулентном потоке.
- 5. Причины возникновения касательных напряжения в турбулентном потоке и методика их учета.
- 6. Особенности законов скоростей и сопротивлений при турбулентном режиме движения жидкости по полуэмпирическим теориям турбулентности.
- 7. В каких зонах гидравлических сопротивлений и почему коэффициент трения λ от шероховатости не зависит? Какие трубы считаются гидравлически гладкими?
- 8. В каких зонах гидравлических сопротивлений коэффициент трения λ зависит от шероховатости стенок трубопровода? Как полуэмпирическая теория турбулентности объясняет влияние шероховатости при $Re > Re^{\prime}_{npeg}$?
- 9. Почему при $Re > Re''_{пред}$ режим движения жидкости называют квадратичным и зоной автомодельности?
- 10. Что называется эквивалентной шероховатостью естественных труб и как определяется числовое значение этой величины?

Тема 7. Расчет трубопроводов и газопроводов

- 1. Основная задача расчета трубопроводов. Трубопроводы короткие и длинные.
- 2. Зависимость расхода от напора в простом коротком трубопроводе переменного сечения.
 - 3. Параллельное включение труб и его целесообразность.
- 4. Особенности расчета длинного трубопровода. Водопроводная формула. Эквивалентная длина.
- 5. Особенности расчета сложного трубопровода с разветвленными участками.
 - 6. Расчет кольцевого трубопровода.
- 7. Особенности расчета газопроводов по сравнению с расчетом трубопроводов. Расчетная зависимость в общем случае.
- 8. Расчет вентиляционных газопроводов (трубопроводов с малыми изменениями давления и температуры).
 - 9. Расчет газопровода с теплообменом.
- 10. Расчет изотермического газопровода при больших изменениях давления.

Тема 8. Истечение жидкости из отверстий и через насадки

- 1. Коэффициент сжатия струи **ε**. Численное значение этого коэффициента при истечении жидкости из малых отверстий и через насадки.
- 2. Что определяет коэффициент скорости ф? Для насадка какого типа этот коэффициент имеет наибольшее значение?
- 3. Коэффициент расхода μ при истечении жидкости из малых отверстий и через насадки. Зависимость между коэффициентами ϵ , ϕ и μ .
- 4. Как определить скорость и расход жидкости, вытекающей из большого отверстия в боковой стенке при постоянном напоре?
- 5. Как определить скорость и расход жидкости, вытекающей из малого отверстия при постоянном напоре?
- 6. Как определить скорость и расход жидкости, вытекающей из цилиндрического насадка при постоянном напоре?
- 7. Как определить скорость и расход жидкости, вытекающей из конически сходящегося насадка при постоянном напоре?
- 8. Как определить расход и скорость жидкости, вытекающей из конически расходящегося насадка?
- 9. Как определить расход жидкости, вытекающей из коноидального насадка при постоянном напоре?
- 10. Как определить расход и скорость жидкости, вытекающей из малого отверстия при переменном напоре?

5. ПРОМЕЖУТОЧНЫЙ КОНТРОЛЬ

После завершения изучения дисциплины студенты сдают экзамен.

К экзамену допускаются только те студенты, у которых зачтено индивидуальное задание и лабораторные работы.

Образец экзаменационного билета приведен в разд. 5.2.

5.1. Вопросы для подготовки к экзамену

- 1. Основные физические свойства жидкости.
- 2. Трубка тока, элементарная струйка и их свойства.
- 3. Линия тока, траектория движения и их свойства.
- 4. Основные понятия кинематики. Способы задания движения.
- 5. Потенциальное и вихревое течения.
- 6. Вывод уравнения неразрывности.
- 7. Вывод уравнения постоянства расхода для элементарной струйки и всего потока.
 - 8. Основное гидростатическое уравнение для капельной жидкости.
 - 9. Давление жидкости на плоскую стенку.
 - 10. Относительное равновесие жидкостей.
 - 11. Сила давления на криволинейную поверхность.
 - 12. Построение эпюр давления на плоскую стенку.
- 13. Уравнения движения Навье Стокса (без вывода). Физический смысл слагаемых. Условия однозначности.
 - 14. Уравнения движения для идеальной жидкости (Эйлера).
 - 15. Режимы течения жидкости (опыт Рейнольдса).
- 16. Вывод уравнения Бернулли для элементарной струйки идеальной жидкости.
- 17. Вывод уравнения Бернулли для всего потока. Условия применимости.
- 18. Геометрический и энергетический смысл слагаемых уравнения Бернулли.
- 19. Решение уравнения Навье Стокса при установившемся течении в плоской трубе.
- 20. Решение уравнения Навье Стокса при установившемся течении в круглой трубе.
 - 21. Вывод формулы Пуазейля. Формула Дарси.
- 22. Особенности расчетов параллельно и последовательно соединенных труб.
 - 23. Расчет простого короткого трубопровода.

- 24. Расчет простого длинного трубопровода.
- 25. Истечение из отверстий и насадков.
- 26. Приведение уравнения Навье Стокса и уравнению неразрывности к безразмерному виду. Критерии подобия.
 - 27. Понятие о реологии и неньютоновском течении жидкости.

5.2. Образец экзаменационного билета

В данном разделе приведен образец экзаменационного билета.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 2

по дисциплине:

Гидрогазодинамика

ИДО

курс: 3

- 1. Линия тока, траектория движения, и их свойства.
- 2. Понятие о реологии и неньютоновском течении жидкости.

Составил доцент:	Бульба Е.Е.
Утверждаю: Зав. каф. ТПТ	Кузнецов Г.В

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Основная литература

- 1. Бульба Е.Е., Зиякаев Г.Р. Гидрогазодинамика: учеб. пособие. Томский политехнический университет. Томск: Изд-во ТПУ, 2013. 108 с.
- 2. Бульба Е.Е. Основы гидравлики: учеб. пособие. Томск: Изд-во ТПУ, 2010. 109 с.
- 3. Валуева Е.П. Введение в механику жидкости: учеб. пособие / Е.П. Валуева, В.Г. Свиридов. М.: Изд-во МЭИ, 2001. 212 с.
- 4. Медведев В.Ф. Гидравлика и гидравлические машины: учеб. пособие. Минск: Высш. шк., 1998. 311 с.
- 5. Сборник задач по машиностроительной гидравлике / под ред. М.И. Куколевского, Л.Г. Подвиза М.: Машиностроение, 1972.

6.2. Дополнительная литература

- 6. Лойцянский Л.Г. Механика жидкости и газа: учебник. 7-е изд., испр. М.: Дрофа, 2003.-840 с.
 - 7. Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1974.
- 8. Бульба Е.Е. Лабораторный практикум по механике жидкости и газа / Е.Е. Бульба, Г.Г. Медведев, Ю.В. Немойкин. Томск: Изд-во ТПУ, 2005.-56 с.

6.3. Интернет-ресурсы

9. СТО ТПУ 2.5.01–2006. Система образовательных стандартов. Работы выпускные, квалификационные, проекты и работы курсовые. Структура и правила оформления / ТПУ [Электронный ресурс] – Томск, 2006. –Режим доступа

http://portal.tpu.ru/departments/head/methodic/standart, свободный

- 10. Информационный портал посвященный теплоэнергетике [Электронный ресурс]. Режим доступа: http://www.teploenergetika.info
- 11. Электронная библиотека для теплотехников и теплоэнергетиков, работающих на электростанциях и промышленных предприятиях различных отраслей хозяйства страны, а также научных работников и студентов вузов соответствующих специальностей [Электронный ресурс]. Режим доступа: http://03-ts.ru, свободный.

Учебное издание

ГИДРОГАЗОДИНАМИКА

Методические указания и индивидуальные задания

БУЛЬБА ЕЛЕНА ЕВГЕНЬЕВНА

Рецензент K.T.H., доцент каф. ТПТ В.И. Максимов

Компьютерная верстка О.В. Нарожная

Отпечатано в Издательстве ТПУ в полном соответствии с качеством предоставленного оригинал-макета

. Формат 60×84/16. Бумага «Снегурочка». Подписано к печати Печать Хегох. Усл.печ.л. 1,05. Уч.-изд.л. 0,95.

> Заказ . Тираж

Национальный исследовательский Томский политехнический университет Система менеджмента качества

Томского политехнического университета сертифицирована NATIONAL QUALITY ASSURANCE по стандарту ISO 9001:2008

тту. 634050, г. Томск, пр. Ленина, 30. Тел./факс: 8(3822)56-35-35, www.tpu.ru

