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U sing the Lanchester model to describe the dynamics of the maris:et where two firms compete
for customers by advertising, we solve the problem of determining an optimal advertising

strategy for maximum discounted profits. We develop both open- and closed-loop strategies
and explain the relationship between them. Using a new mathematical approach, we prove that
our closed-loop solution is a global Nash equilibrium. The closed-loop strategy is time-variant
and depends linearly on the actual market share. The time-variant coefficient incorporates the
discount factor; its computation requires the solution of a backward differential equation and a
set of two nonlinear differential equations for an initial value problem. The closed-loop adver-
tising expenditures are proportional to the open-loop advertising expenditures and to the square
of the competitor's actual market share. This provides a very practical adaptive control rule that
allows the manager to adjust the actual advertising expenditure and to deviate from budget. We
illustrate the use of our control rule, using data for the period 1968-1984 of the Cola War.
Marketing implications of the results are provided.
(Marketing-Competitive Strategy; Nash Equilibrium; Bilinear-Quadratic Differential Game; Nonco-

operative)

Though simple, it is rich enough to provide a meaning-
ful description of aggregate market sales. Indeed, it has
been used by many researchers, both in marketing and
other social fields, to model a wide variety of competi-
tive situations (Kimball 1957, Vidale and Wolfe 1957,
Isaacs 1965, Horsky 1977, Little 1979, Case 1979, Deal et
al. 1979, Deal 1979, Erickson 1985).

Although the model is rich in describing the effect of
marketing activities on sales, in order to investigate
what will actually happen in a given market, one has to
model the objectives and strategies of the competing
firms, and find the dynamic equilibrium that will evolve
in the market. The straightforward approach is to as-
sume that each firm maximizes its own discounted ex-
pected cash flow (net present value-NPV). This has
indeed been the approach taken by several recent
publications in the field. Chintagunta and Vilcassirn
(1992), and Erickson (1992), for example, have applied
this model, together with the solution outlined in Case

1. Introduction
In our increasingly competitive and dynamic world,
with a growing emphasis on marketing, companies are
spending ever more on advertising. Although many re-
cent studies suggest that companies are spending too
much on advertising (Eastlack and Rao 1989, Ibrahim
and Lodish 1993), executives are often quoted as saying
that they have no choice, because that is what the com-
petition is doing.

Our objective in this paper is to exercise parsimony
in modeling the process, so that an analytical solution
is obtained, but not at the expense of richness in ap-
proximating the main phenomena in the market. The
main features that we want to capture are the dynamics
of the market on the one hand, and competitive and
strategic behavior on the other.

Like many previous studies, we have chosen the
Lanchester model to describe the market dynamics.
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i(t) = P1[1 - X(t)]U1(t) - P2X(t)U2(t), X(O) = XO' (1)

Assuming a fixed pool of customers, then the terms x(t)
and 1 - x(t), represent the fractions of the total cus-

tomer pool that, at time t, purchase the firm's and the
competitor's product, respectively. The control vari-
ables U1(t) and uz(t) represent the square root of the
firm's and the competitor's marketing expenditures, re-
spectively. The effectiveness of the promotion efforts, in
the simultaneous combat on customers, is measured by
P1U1(t) for the firm and by pzuz(t) for the competitor.
The constants P1 and pz are related to media-buying,
and to other product and market characteristics.

Consider now the following standard discounted
profit objective functions for the competitors

n (Ut, uz> = f ~ [QkXk(t) - rku~(t)]e-!'tdt, k = 1,2,

k 0

(2)

where

k = 1,x,
(3)Xk =

1 - x, k = 2.

(1979), to solve the case of the Cola War between Coke
and Pepsi. Both have found that the closed-loop solu-
tion provides a better fit to the data than an open-loop
solution. However, their results are restricted to the par-
ticular case of a zero discount rate.

In this paper we reconsider the problem stated by
Chintagunta and Vilcassim (1992), and Erickson (1992),
of finding competitive advertising strategies which
maximize the NPV in a duopoly market with dynamics
described by the Lanchester model. We provide a so-
lution for both the open-loop and the closed-loop ad-
vertising strategy for Nash equilibrium. Our solution
generalizes the previously published results in several
directions. First, in contrast to previous literature re-
lated to this problem (Case 1979, Erickson 1992, Chin-
tagunta and Vilcassim 1992), we are able to treat the
case of nonzero discount rate! We do this by consid-
ering a wider strategy set, i.e., time-variant closed-loop
strategies that may depend on initial conditions. Using
a new optimization approach-completing the objec-
tive function to a perfect square-we prove that our
closed-loop strategy is a global Nash equilibrium, for
the general case of nonzero discount. Our approach
avoids the mathematical computations associated with
the Hamilton-Jacobi-Bellman equations. We also find
necessary and sufficient conditions for which the time-
variant closed-loop strategy will coincide with the open-
loop strategy and become time-invariant. Finally, the
closed-loop solution has a very nice property. The ad-
vertising expenditure of the closed-loop is proportional
to the open-loop advertising expenditure (by which ex-
penditure is adjusted over time) and to the square of the
competitor's actual market share. Thus it is an easily
implementable control rule.-

In the following, we first describe the model and solve
it mathematically, then relate it to previous work, and
show how it works with the parameters generated by
the Cola War.

The constant qkl k = 1, 2, represents the gross profit rate
of firm k, JL is the constant discount rate; and rk, k = 1,

2 represents the effectiveness of advertising buying-
power (perhaps, the two ~s can get different dis-
count rates on advertising). Usually, r1 = r2 = 1.

The admissible control Uk, k = 1, 2 is restricted to be

a state feedback, (i.e., a function of x), bounded by the
total budget of the company. More exactly, we consider
a wider strategy set, where the control depends on
(xo, x, t) and find the closed-loop optimal control (see,
e.g., Fershtman 1987, p. 219). In the special case where
the initial state coincides with the current state of the
system our solution becomes a feedback strategy which
depends on (x, f).

The objective of this paper is to consider the time-
variant bilinear-quadratic game problem of finding ad-
missible u;, k = 1, 2, satisfying the following inequality

conditions:

2. Problem Statement
Assume the dynamic system given by the "combat
equation," known as the Lanchester model,

(4)
1 Sorger (1989) solved the nonzero discount rate case for a different

dynamical model.

n (u~, u;) ;2: n (Ut, u;) and
t t

R (u~, u;) 2: R (u~, U2), (5)
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for all admissible Uk, k = 1, 2. In other words, we want
to find an admissible strategy (U~, u;) that is a global
Nash equilibrium of the differential game associated with

(1) and (2).

k = 1, 2, (7)
(_l)k+lUk(t) = " r;;l PkAk(t)(l - Xk(t»,

where Ak(t)e-,,1 represents the Lagrange multiplier.
Substituting (7) in (1) and (6), the following two-

point" boundary-value problem (TPBVP) is obtained:

:i = ~[rl1 pt(l - X)2Al + r21 P~X2AJ, x(O) = Xo, (8)

'\k = P,Ak + ~[rl1 ptAIAk(l - x) - r21 p~A2AkX]

3. Determination of the Closed-Loop
Nash Equilibrium Advertising
Strategies

To succeed in a dynamic market, advertising strategy
must reflect the current situation. It is good practice to
divide the planning cycle into two phases. In the anal-
ysis and planning phase, a marketing plan is elaborated.
In the executive phase, the plan is adapted to the situ-
ation as monitored by the marketing manager.

In this work, we develop a simple approach that,
when applied to an open-loop strategy, readily gener-
ates a closed-loop strategy. This allows a time-variant
(open-loop) strategy (whose formulation may require
elaborate calculations) to be developed in advance for
the entire planning period; then, during the implemen-
tation phase, when time is at a premium, and informa-
tion on real events becomes available, strategy can be

updated.
The structure of this section is as follows. First we find

an open-loop solution from the first-order necessary
conditions. Then we construct the closed-loop solution,
and prove the Nash equilibrium conditions (4) and (5).
Finally, we show the simple transformation formula for
the closed-loop strategy from the open-loop strategy.

3.1. The Algorithm of Constructing the Closed-Loop

Strategies
In the following, we develop first-order necessary con-
ditions for optimality for a set of control variables which
are explicit functions of time, i.e., U1 (t) and U2(t). In the
next stage, we construct the closed-loop strategies and
then prove that they satisfy the Nash equilibrium in-
equalities (4) and (5).

Considering the differential game (1) and (2) and us-
ing a variational approach, see Appendix 1 (A3, A4,
A6), cf. Bryson and Ho (1975), we obtain the following
first-order necessary conditions:

;).k(t) = J1.~(t) + (P1U1(t) + P2U2(t»Ak(t)

+ (-l)kqk' lim Ak(t)e-jtt = 0, k = 1,2, (6)
t.-.oo

- (-I)k+lqk, lim ~(t)e-l'1 = 0, k = 1,2. (9)
, ,

To find the values for Uk that produce a stationary
value for Ok' we must solve the TPBVP (8) and (9). Note

that Deal (1979), as well as Chintaguntaand Vilcassim
(1992), treated this TPBVP for the case J1. = O. They were

able to find only a numerical solution. In the following,

we will give an analytical solution.
Notation. In the following exposition we will use the

notation xP for x which solves (8) and (9). The super-

script "P" stands for "Plan."

~EMMA 1. Let Ak be as in (8) and (9) and suppose

Ak(t) = (-I)k+lqkel'I<I>(t), k = 1,2. (10)

Then with the above notation, <I> satisfies the following back-

ward differential equation:
<I>'(t) = ~[rl1piql(1 - xP) + r21p~q2xP]eid<l>2(t) - e-id,

<1>(00) = O. (11)

REMARK 1. From Lemma 1, it follows that (10) is a
solution of (9) and the set of two equations in (9) can

be reduced to Equation (11).
PROOF OF LEMMA 1. Equation (11) follows immedi-

ately by substituting (10) and its derivative with respect

to t into (9). 0

COROLLARY 1. Let <I>(t) be as in (11) and suppose

<I>(t)el'1 = l/J(xP). (12)

Then I/J satisfies the following differential equation2:

2 If jJ. = 0, using the transfonnation 1f12(XP) = f(xP), Equation 03) be-

comes a linear differential equation; integrating it and considering 00)

and 02), we obtain

~(t) = (-l)k+lqtlfl(XP)

k = 1, 2.
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(13)

1/1' (XP)I/I(xP)[rl1 P~ql (1 - XP)2 - ri1 P~q2(XP)2]

- [rl1p~ql(1 - xP) + ri1p~q2XP]I/I2(xP)

= 2,ul/l(xP) - 2, lim I/I(xP(f»e-id = O.
1--

PR(x)F.

lation

Equation (13) follows from (11) and the re-

<1>' (t)el'l + J.LI/I(XP) = I/I'(xP):ip. 0 (14)

COROLLARY 2. The TPBVP (8) and (9) can be trans-
formed into the following initial value problem (Wp)3:

From (17), we learn that the closed-loop strategies
are time-variant and depend linearly on the actual
market share of the competition, and nonlinearly on
the market and brand parameters. The time-variant
coefficient is computed at xP, through Equations
(15a-b) and (13).

REMARK 2. The time-variant coefficient, e/L'cI>(t), of
both closed-loop (open-loop) advertising strategies, is
index-invariant. This means that both firms' strategies
react in the same way to time factors. At each moment,
these strategies differ only by their effectiveness, gross
profit rate and actual market share.

In the next subsection, we prove that the closed-loop
strategies u:, k = 1,2, defined in (17), are global Nash
equilibrium strategies, i.e. they satisfy inequalities (4)
and (5).

iP = ![rl1pf(1 - XP)2ql - r21p~(xP)2q2]ei'tcp(t),

x(O) = XO1 (15a)

cp'(t) = ~[rl1p~ql(1 - XP) + r21p~q2XP]el'tcp2(t) - e-l't,

~(O) = l/I(xo), (15b)

where ljI(xo) is obtained by solving the backward Equation

(13).

PROOF. Equation (15a) follows from (8) by consid-
ering (10). Integrating (13) we obtain the value of I/I(xo).
Considering (12) we obtain I/I(xo) = ~(O). Therefore the

backward differential equation (11) can be transformed
into the forward differential Equation (15b). 0

ASSUMPTION 1. Let

(16)U?L = ~klPk'lk<I>(t)e!'t(1 - xf), k = 1,2,

and, xP and cp(t) satisfy (15a-b),

ASSUMPTION 2. Let

. u: = ~k1P~kCP(t)e!"(1 - Xk), k = 1,2, (17)

be the closed-loop strategies, where Xk is the state as in
(3) and satisfies Equation (1) and, xP and cp(t) satisfy

(15a-b).

3.2. Global Nash Equilibrium Closed-Loop
Strategies: The Main Result

THEOREM 1. Consider the differential game associated
with (1) and (2). Then the pair (u~, u~) defined in (17) forms
a global Nash equilibrium closed-loop strategy of the above

differential game, i.e., it satisfies the conditions (4) and (5)
for every admissible Uk, k = 1, 2.

PROOF. See Appendix 2.
Note that we have found a closed-loop equilibrium

which is Nash and is a function of (t, Xo, x). Since it does
not necessarily constitute an equilibrium for a game that
starts at a different Xo it is a Nash equilibrium which is
not subgame perfect.

REMARK 3. The input (17) is a closed-loop strategy
with a very special structure. It uses the same "time-
shape" as in the open-loop strategy and updates the
changing in market conditions by exchanging xP (t) with
the actual market share x(t) as measured at real time t
(and assuming here that it can be modeled by the dy-
namic equation (1». The subsection 3.5. is devoted to
further discussion on the relationship between the
open-loop strategy UfL and the optimal closed-loop

..
strategy Uk.

3.3. The Trajectory of xP: Properties
Let

(18)a(xP) = Tl1 p?(1 - XP)2ql - T"i1 p~(XP)2q2 = o.

Considering (18) and (15a) we have3 An IVP is much easier to solve then a TPBVP.
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In fact, we have the following interesting relationship
between them: ",

(20)
.. OL( l - Xk) k- 1 2Uk = Uk -P' -,.1 - Xk

iP = a(xP)cI>(t)epf, XP(O) = Xo. (19)

From (19) it follows that xP(t) increases or decreases
with sgn[a(xP)]. Let us assume for simplicity that
rl1pi = r21p~. Then considering (18) we conclude with

the following:
(i) xP(t) increases or decreases with sgn[xP(oo) - xo].
(ii) sgn[xP(oo) - 0.5] = sgn(ql - q2) and if q1 = q2,

then xP(oo) = 0.5.
In other words, for firms with symmetric advertising

effectiveness, xP(t) increases if the initial state is below
the steady state and vice versa. Also if q1 > q2, then the
steady state is greater than 0.5 and vice versa. For q1
= q2' the steady state is exactly 0.5.

3.4. The Open- and Closed-Loop Strategies:

Computation
Equations (16) and (17) can be derived by integrating
(13) and (15a-b).4

3.5. The Open Loop vs. the Closed Loop: Discussion
Comparison of (16) with (17) reveals similarities be-
tween closed-loop and open-loop advertising strategies.

4 If IL = 0, considering (16), (17), (12) and footnote 2, the following

explicit fonn can be obtained for the open- and closed-loop strategies,

aL - 1 -) .t,( P)(1 P)Uk -;; Tk P~k'" x - Xk

k = 1,2

and

k = 1,2.

Also, considering (19), we have

iP = ~[4(xP(CX) - xP)a(xp)r/2, xP(Q) = xo.

Integrating this equation, we obtain that xP is a function of Xo and I,

and satisfies:

The relationship (20) stands an important practical
control rule; if one derives the open-loop solution, as
explained in §§3.3 and 3.4, then the closed-loop so-
lution is immediately obtained by multiplying the
open-loop solution with the ratio between the market
share of the competition, as measured at real time and
the amount (1 - xP). For example, if Firm 1 discovers

a 40% increase in the competitor market share with
respect to the competitor planned market share (1
- xP), the advertising expenditure will be approxi-

mately doubled (1.42).
Note that at t = 0, the closed-loop strategies ar~ equal

to the open-loop strategies. This means that the closed-
loop strategy uses the open-loop strategy at the initial
tin)e and then it works according the actual measure-
ment Xk.

In the particular case, when x(t) = xP(t), the closed-

loop strategy continues to work as the open-loop strat-
egy. As can be seen from (20), this is a necessary and
sufficient condition for the equality of the open- and
closed-loop strategies. In this case, the closed-loop so-
lution becomes time-invariant.

Summarizing this section we conclude with the fol-
lowing important results:

. The time-variant closed-loop strategies in (17) form
a global Nash equilibrium for the differential game as-
sociated with (1) and (2). It depends linearly on the ac-
tual market share. The time-variant coefficient incor-
porates the discount factor.

. The time-variant coefficient, eltlcp(t), is the

same for both players and requires the solution of a
backward differential equation and a set of two non-
linear differential equations for an initial value
problem. '

. The closed-loop strategy is related to the open-loop
strategy by the simple formula in (20).

. Necessary and sufficient conditions are given for
which the closed-loop strategy becomes equal to the
open-loop strategy. In this case the closed-loop solution
becomes time-invariant.

IxP [4(xP«(X) - x)a(x)]-1/2dx = !t.
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Figure 1 Open-Loop Solution for the Parameters of the Cola War Left: Advertising Trajectory over Time Right: The Tra-
jectory of xP
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Figure 1 solves the base case, i.e., '1 = '2 = 1, PI
= P2 = 0.0119, Xo = 0.694, ql = 795, q2 = 366, and J1,
= o. In this case xP(oo) = 0.595766. It shows, on the

left, the advertising expenditures strategies over
time, and, on the right, the corresponding xp. Both
strategies and xP exhibit monotonic behavior. Coke,
starting with a market share that is higher than the
steady state and having a higher gross profit rate,
increases its advertising over time as its market share
slips to the steady-state level. Pepsi, on the other
hand, starts with an advertising blitz, reducing it
over time as it approaches steady state. At steady
state, as we expect, the ratio of advertising expen-
ditures is proportional to the ratio of the correspond~
ing gross profits and the companies' market shares

4. Illustrative Examples,
Comparisons with the Literature
and Concluding Comments

In the following presentation, we solve and plot our re-
sults for the Cola War, where we use the data and pa-
rameters reported in Erickson (1992). The illustrations
in Figure 1 are for the open-loop strategies and the tra-
jectory of xp. Using the relationship (20), between the
open- and closed-loop strategy, we find the correspond-
ing closed-loop strategy; and demonstrate (Figure 3)
how our time-variant solution, incorporating the non-
zero discount factor provides a better approximation to
what happened in practice (Figure 2) than do the avail-
able solution in the literature.

Figure 2 Actual Advertising for the Cola War Case and Coke's Market Share
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Figure 3 Closed-Loop Advertising for Cola War for Different Discount Rates
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(Coke's expenditure is approximately twice the size
of Pepsi's expenditure).

Figure 2 shows the actual data for the Cola War dur-
ing the period 1968-1984 (the year before the introduc-
tion of the "New Coke"). The left part shows the ad-
vertising expenditures for the two brands, and the right
part, Coke's market share.

Figure 3 shows our closed-loop advertising expendi-
tures for different discount rates, based on the above
actual market share. We see that advertising levels are
lower for both firms when discount rate is higher. This
make sense since firms invest less in advertising that
generates future return. Furthermore, we see that the
closed-loop solution does indeed seem to fit Coke's ac-
tual advertising better than does the open-loop. This
finding matches the results of Erickson (1992), which
evaluated the case of zero discount rate. Our new results
show that the approximation is better for a nonzero dis-
count rate. In fact, IJ. = 15% provides the closest fit. This

would indeed be the representative discount rate over

this whole period, taking into account inflation plus
risk-adjusted return. (We realize that the discount rate
may have changed over the years, e.g. due to different
inflation rates, but a thorough econometrics analysis of
this point is beyond the scope of this paper.)

In summary, this section illustrates the following

points:
1. Open-loop advertising is monotonic. It starts with

an amount proportional to the company's gross profit
rate and the initial market share of the competitor and
it decreases as market share increases, and vice versa. It
converges to an amount proportional to the company's
gross profit rate and to the steady-state market share of
the competitor. The steady-state market share depends
on the gross profit rate, where the higher the relative
gross profit, the higher is the steady-state market share.

2. The higher the discount rate, the lower is the ad-

vertising spending.
3. The closed-loop strategy is no longer monotonic,

since it relates to what is happening to the actual mark~t
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share. We show that the closed loop with a 15% dis-
count rate provides a better approximation to what hap-
pened in the Cola War than the previously solved case
of zero discount.

fj = -(lim ~(t)e-"')x«(X) + ~(O)x[) + L ~ IHk(x(t), "I(t), "2(t), ~(t»

k , , [)

+ l>-t(t) - Jl,~(t)lx(t)e-p1ldt, k = 1,2.

Now consider the first-order variation in llk due to variations in the
control variable Uk. and the state variable x, for fixed initial conditions
and fixed initial and final times,

6 II = -(lim ~(t)e-p1)6x(oo) +
L ~ ([8Rk/8x + (~ - Jl~)e-"tJ6x

k..- 0

+ (8Hk/8uk)OUkJdt, k = 1,2. (A2)

Define ~, so as k = 1, 2, to cause the coefficients of ox to vanish, that

is, as

4=Jt~-
8Hk I kfuel' = JJ.>-t + (PtUt + P2UJ>-t + (-1) qk, k = 1,2,

(A3)

with the boundary conditions

lim >..(t)e-'" = 0, k = 1, 2.
,-..

(A4)

5. Conclusions
This paper presents a new approach to analyzing dy-
namic competitive problems. It provides for the devel-
opment of optimal closed-loop strategies that avoid
the mathematical computations associated with the
Hamilton-Jacobi-Bellman equations. In addition the fol-
lowing contribution are obtained:

. The special construction of closed-loop strategies

provides a practical adaptive control rule that allows the
manager to adjust actual advertising expenditure and
deviate from the planned budget (open-loop).

. The optimal solution for maximizing profits for

competitive firms incorporates the nonzero discount
rate.

We hope that the new methodology and analysis of
this paper will stimulate further research in the area.
Some of the obvious directions are to allow for distur-
bances in the system and in the measurements, for un-
certainty in the parameters, and to estimate the param-
eters using a filtering and adaptive control approach.s

Equations (A2) then become

0 n = L ~ [(aRk/8uJouJdt, k =

k 0 I, 2. (AS)

For the extreme, cnb k = 1,2, must be zero for an arbitrary CUb k = 1,
2; this can only happen if

aRk
Ouk

= [-2rkUk - (-l)kpk(1 - xJ>.t]e-"t = 0, k = 1,2,
5 The authors wish to thank Professor Gary Erickson for providing us

with the empirical data used in Figure 2, and for valuable comments
on previous drafts, and the reviewers and the Associate Editor for their
constructive comments. The authors wish to thank Professors Arkadi
Nemirovski and Dan Peled for valuable discussions.

or

(_l)k+l

2
rkl Pk>.tO - Xk), k = 1,2. (A6)Uk =

Equations (A3), (A4) and (A6) are the Euler-Lagrange equations.

Appendix 2

Proof of Theorem 1
The idea is to transform the payoff functional llk(UI, uJ, k = 1,2, to a

perfect square, by adding a suitable zero sum.
Consider the zero sum

Appendix 1

Derivations of the First-Order Necessary Conditions for Nash

Equilibrium
Adjoining the constraint Equation (1) to Ok' k = 1,2, with a Lagrange
multiplier, ~(t)e-"t, k = 1,2, we obtain,

llt = L~ {QkXk(t) - rtU~(t) + ~(t)[Pt(l - x(t»Ut (t)

(B1)

where f/>(t) is as in (1Sb) or (11), and Xk as in (1)-(3).

Considering (Bl) we obtain

0 = qkX~cI>(O) + L~ (q~kcl>(t) + qkXkci>(t)]dt. (B2)

- P2X(t)U2(t) - i(t)Jle-"'dt, k = 1,2. (AI)

For convenience, we define a scalar function Hk' k = 1, 2 (the Hamil-

tonian), as follows:

Hk(x(t), Ul(t), U2(t), ~(t»

= {qkXk(t) - rku~(t) + ~(t)[Pl(1 - X(t»Ul(t) - P2X(t)U2(t)Jle-"'.

Then, integrating the term on the right side of (AI) by parts, yields Using Equation (1) we obtain
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0 = qk~Il>(O) + r~ ([PI(l - X)Ul
Jo

- 2rlU?Lu~ + PtQIU?L<)(t)e'" - Qlx]e-"'dt. (85)

Now let k = 2, then considering again (B4), (16) and (17), we obtain

0 = q2(1 - xo)cI>(O) + L~ {2r2u~u2 + 2rl(q2/ql)U~[(P2/ PI)UlfL - UI]

- P2XU2)(-1)k+1qk~(t) + qkXkci>(t»)dt. (B3)

Now, consider Equation (15b) or (11), then (83) will become

0 = qkX~~(O) + i~ ([PI(1 - X)U1 - P2xuJ(-1)k+1qk~(t)

- 2r2(PI/pz}U?LU; + PIQ2U?Lc)(t)e'" - Q2(1- x)le-"'dt. (86)

Now adding the zero sum (85) to Equation (2), we obtain

+ ~kxJrl1plql(1 - XP) + r21p~q2xPJe"tc)(tf - qkx~-/'1}dt. (B4)

Let k = 1. Considering (16) and (17), then (B4) will become

ill (UI, UJ = qIXO~(O) + L~

= qIXO~(O) + L~

-rtu? + 2rtu~ut + 2r2(qt/qJU~(U~L - UJ - 2rtu?Lu~ + PtqtU?Lc)(t)e"f]e-"fdt

-TI(U~ - UJ2 + TIUt2 + 2T2(ql/qZ>U~(U~ - uz> - 2TIU?LU~ + PlqIU?L~(t)epl]e-pIdt. (B7)

Particularly, n (u~, u;) = qlxo~(O) + i ~ [rlu12 + 2r2(ql/qJu;(U,?L - U;) - 2rIU?Lu~ + PlqIU?L~(t)e"t)e-"tdt.

1 0
(BS)

Now considering (BID) and (Bll) we have

.-~ (u~, uJ = ~ (u~, u~) - L~ r2(u~ - u2fe-!" s ~ (u~, u~),
Now considering (B7) and (B8) we have

n (UI, u~) = n (u~, u~) - r~ r,(u~ - uJ2e-"'dt
I I J"

(B9)
(B12)

s II, ,u'l, u~),
for every admissible Ub which is exactly condition (5). 0

for every admissible UI, which is exactly condition (4).

Now adding the zero sum (B6) to Equation (2), we obtain

- 2r2(pt/ pJUPLU~ + PtQ2UpLoI>(t)e"lle-"'dt

= q2(1 - xo)~(O)

+ i~ (-r2(U; - U2)2 + r2U~2 + 2rl(q2/qJU~[(P2/Pl)U~L - UJ

- 2r2(PII pJU?LU~ + PIQ2U?LcI>(t)e"'le-"'dt. (BI0)

Particularly,
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