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Competitive Advertising under Uncertainty: 

A Stochastic Differential Game Approach 

 

 

Abstract:  

We analyze optimal advertising spending in a duopolistic market where each firm’s 

market share depends on its own and its competitor’s advertising decisions, and is also 

subject to stochastic disturbances. We develop a differential game model of advertising in 

which the dynamic behavior is based on the classic Vidale-Wolfe advertising model and 

the Lanchester model of combat, as well as perturbed by a Brownian motion. Particularly 

important to note is the morphing of the Vidale-Wolfe sales decay term into decay caused 

by competitive advertising and non-competitive ‘churn’  that acts to equalize market 

shares in the absence of advertising. We derive closed-loop Nash equilibria for 

symmetric as well as asymmetric competitors. For all cases, explicit solutions and 

comparative statics are presented. 

 

Keywords: Advertising expenditure; Advertising budgeting; Competitive strategy; 

Differential games; Stochastic calculus 
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1. Introduction  

 

The advertising spending decision has been the focus of considerable interest for 

researchers in marketing as evidenced by the large body of literature devoted to this 

subject starting with Vidale and Wolfe (1957) and reported in surveys by Sethi (1977) 

and Feichtinger, Hartl and Sethi (1994). The annual expenditure on advertising by firms 

is very large, with a CMR/TNS (2003) media report that total ad spending for all media 

was 117 billion dollars in 2002 in the US alone. At the same time, marketers have noted 

that firms often advertise in a suboptimal manner. For example, Patti and Blasko (1981) 

and Blasko and Patti (1984) found in surveys that a large percentage of industrial and 

consumer goods firms do advertising budgeting based on the affordable method, the 

percentage-of-sales method, and the competitive-parity method. These methods are rarely 

optimal. A number of researchers have also concluded that firms tend to over-advertise 

(Aaker and Carmen 1982, Lodish et al. 1995).  

 The combination of the large amounts of money spent on advertising and 

potential inefficiencies in the advertising budgeting process motivates the interest in 

better understanding optimal advertising budgeting. However, one must take care to limit 

the conclusions of optimality to only those markets for which the model applies. For 

instance, ad expenditure or advertising policies that are optimal in a monopoly setting 

would not be optimal in a competitive setting. We, thus, define our market context and 

research question as follows. 

 We examine a duopoly market in a mature product category where the two firms 

compete for market share using advertising as the dominant marketing tool. The firms are 
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strategic in their behavior, that is, they take actions that maximize their objective while 

also considering the actions of the competitor. Furthermore, they interact dynamically for 

the foreseeable future. This is in part due to the carry-over effect of advertising, which 

means that advertising spending today will continue to influence sales several months 

down the line. Each firm’s advertising acts to increase its market share while the 

competitor’s advertising acts to reduce its market share. In addition to competitive 

effects, market share decay, or churn, can also be caused by non-competitive effects 

described in the next paragraph. However, marketing and competitive activities alone do 

not govern market shares in a deterministic manner because there is inherent randomness 

in the marketplace and in the choice behavior of customers. The market for cola drinks, 

dominated by Coke, Pepsi and their Cola Wars, provides us with an example of a market 

with such features (Chintagunta and Vilcassim 1992, Erickson 1992, Fruchter and Kalish 

1997). 

 We now consider non-competitive reasons for market share churn. (In a duopoly 

situation, the decay of market share for one firm is a gain in market share for the other. 

Thus, ‘churn’  rather than ‘decay’  is a more appropriate term and is used hereafter.) 

Although a firm’s market share churn is a dynamic effect that occurs continuously, it is 

obscured during the period of advertising by market share gains made due to advertising. 

It is hence, most visible when the firm does not advertise. Explanations for non-

competitive churn are product obsolescence, forgetting (Vidale-Wolfe 1957), lack of 

market differentiation (Bain 1956), lack of information (Nelson 1974), variety seeking 

(McAlister and Pessemier 1982) and brand switching. Absent stochasticity, if market 

share churn were due solely to competitive effects, consider what would happen if neither 
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firm advertised – market shares would remain at a fixed level, never changing. However, 

due to the non-competitive factors just mentioned, one would expect market shares to 

converge to a long-run equilibrium when neither brand is advertised for a very long 

duration. The proposed model takes into account decay due to competitive advertising as 

well as churn due to non-competitive factors.  

For a competitive market with stochastic disturbances and other features as 

described above, our objective then is to recommend optimal advertising expenditures 

over time for the two firms. Due to the carry-over effect of advertising, the optimal 

advertising spending over time is determined using dynamic optimization methods.1 In 

the present case, a stochastic differential game model is formulated that is based on a 

monopoly model due to Sethi (1983), which is stochastic and explicitly solvable. We find 

a unique equilibrium where the optimal advertising for both firms follows a simple rule. 

We also find that market shares will be Beta distributed and that average market shares 

take the form of an attraction model. Finally, an illustration of the results is provided.  

Our research follows in the operations research tradition in marketing. Similar 

advertising expenditure problems have been examined, for example, by Chintagunta 

(1993), Chintagunta and Vilcassim (1992), Deal, Sethi and Thompson (1979), Erickson 

(1995, 1991), Fruchter and Kalish (1997), Horsky (1977), Horsky and Mate (1988) and 

Sorger (1989). Whereas elements of the marketing environment described above, such as 

dynamics, competition, competitive and non-competitive decay, and also stochasticity, 

have been commonly accepted and described by individual models, there have been few 

                                                 
1 The techniques used in this paper are discussed in textbooks on dynamic optimization, including Sethi and 
Thompson (2000). A useful reference for stochastic processes is Karlin and Taylor (1981). For a discussion 
of stochastic calculus in marketing, see Jain and Raman (1990). 
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attempts to study them together. We provide a focused literature discussion in the next 

section.  

 The rest of the paper is divided into sections dealing with the existing literature, 

the description of the model, the analysis for symmetric and asymmetric firms, and, 

finally, the conclusions. 

 

2. Background 

 

Among the earliest aggregate response models is the Vidale-Wolfe model whose 

dynamics are given by  

0

( )
( )(1 ( )) ( ),   (0)

dx t
u t x t x t x x

dt
ρ δ= − − = ,    (1) 

where ( )x t is the sales rate (expressed as a fraction of the total market) at time t , ( )u t  is 

the advertising expenditure rate, ρ  is a response constant and δ  is a market share decay 

constant. ρ  determines the effectiveness of advertising while δ  determines the rate at 

which consumers are lost due to product obsolescence, forgetting, etc. The formulation 

has several desirable properties, for example, market share has a concave response to 

advertising, and there is a saturation level (Little 1979). Sethi (1973) and others have 

provided the optimal advertising path for this type of problem. 

 Subsequent research has concentrated on extending the basic framework to 

include the effect of advertising expenditure by competitors. Dynamic advertising 

competition among duopolists battling for market share has been investigated by, among 

others, Deal (1979), Deal, Sethi and Thompson (1979), Erickson (1995, 1992) and 

Chintagunta and Vilcassim (1992), and surveyed by Erickson (2003) and Jorgensen 
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(1982). These studies have used the Lanchester model of combat to characterize the 

market share evolution over time for the competing firms (Kimball 1957, Little 1979). 

Although there is no consensus on the competitive extension of the Vidale-Wolfe 

formulation, a possible dynamics based on the Lanchester model of combat is  

1 1 2 2 0

2 2 1 1 0

( )
( ( ), ( ))(1 ( )) ( ( ), ( )) ( ),   (0) ,

( )
( ( ), ( )) ( ) ( ( ), ( ))(1 ( )),   (0) 1 ,

dx t
u x t y t x t u x t y t x t x x

dt
dy t

u x t y t x t u x t y t x t y x
dt

ρ ρ

ρ ρ

= − − =

= − − = −
  (2) 

where ( )x t  and ( )y t  represent the market shares of the two firms, whose parameters and 

decision variables are indexed 1 and 2 respectively.2 Note that ( ) ( ) 1x t y t+ = . 

Differential games can be solved using either open-loop or closed-loop solution 

concepts (e.g., Chintagunta 1993, Erickson 1995, 1992, Feichtinger et. al 1989, Fruchter 

and Kalish 1997). In the open-loop solution, competing firms decide at inception what 

their advertising expenditures will be over the planning horizon. The closed-loop solution 

envisages that competing firms decide upon their advertising response given the current 

state. Whereas this solution concept is intuitively more appealing, robust, and satisfies 

what game theorists call subgame perfection, it is more difficult to compute a closed-loop 

solution versus an open-loop solution. Typically, resort must be made to numerical 

methods of solution. In this paper, however, we will obtain explicit closed-loop solutions. 

In addition to competitive extensions, recent research has delved into the problem 

of stochastic disturbances where the state variable, usually market share, is determined by 

                                                 
2 When advertising expenditure enters linearly in the dynamic equation, its cost in the objective function is 
often assumed to be quadratic (or more generally, convex) to ensure concavity of the objective function 
(e.g., Erickson 1995). Equivalently, one can take the square root of the advertising expenditure in the 
dynamic equation and subtract advertising expenditure linearly in the objective function (e.g., Sorger 
1989). See Gould (1970) and Sethi and Thompson (2000) for a discussion. However, if empirical evidence 
suggests convexity of the objective function, see the literature on chattering or pulsing advertising policies 
(Mahajan and Muller 1986, Sasieni 1971) 
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stochastic disturbances in addition to advertising spending (e.g., Sethi 1983). We start 

with the stochastic, monopoly advertising formulation of Sethi (1983). This formulation 

is given by the Itô equation  

( ) 0( ) ( ) 1 ( ) ( ) ( ) ( ),   (0)dx t u t x t x t dt x dw t x xρ δ σ= − − + = ,  (3) 

where ( )xσ  represents a variance term and ( )w t  represents a standard Wiener process. 

The formulation has the useful feature in that it has a basic resemblance to the Vidale-

Wolfe model and at the same time it permits an explicit solution to the advertising 

spending decision. We wish to extend this model to incorporate competition.  

 A related extension is due to Sorger (1989). He uses a special case of the 

Lanchester model to take advantage of Sethi’s (1983) formulation that results in an 

explicit solution. This is, 

1 1 2 2 0

2 2 1 1 0

( , ) 1 ( , ) ,   (0) ,

( , ) 1 ( , ) ,   (0) 1 .

dx
u x y x u x y x x x

dt
dy

u x y y u x y y y x
dt

ρ ρ

ρ ρ

= − − =

= − − = −
   (4) 

In particular, Sorger also describes the appealing characteristics of the model in detail, 

noting that it is compatible with word-of-mouth and nonlinear effects, and provides a 

comparison with other dynamics used in the advertising scheduling literature. However, 

the decay constant δ  is not included in that model and it is assumed to be replaced totally 

by competitive effects.  

On the other hand, we extend the Sethi model to allow for competition. We are 

able to do so while retaining the decay constant. Note that a stochastic version of Sorger’s 

model is a special case of ours when 0δ = . The decay constant which goes back to the 

Vidale-Wolfe formulation is not solely replaced by competitive advertising effects. Thus, 
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in order to capture effects such as forgetting the decay parameter has been morphed into 

the churn parameter. We will discuss how including the term affects the outcome. 

We will consider the case of symmetric and asymmetric competitors in a 

duopolistic market. The discussion focuses on the infinite horizon case. Although having 

a finite horizon presents no theoretical difficulties, it is unclear that additional insights 

would be forthcoming to balance the much greater complexity of the resulting 

mathematical expressions in the finite horizon case.  

 

3. The model 

 

We consider a duopoly market in a mature product category where total sales are 

distributed between the two firms, denoted firm 1 and firm 2, which compete for market 

share through advertising spending. We denote the market shares of firms 1 and 2 at time 

t  as ( )x t  and ( )y t , respectively. Table 1 gives the additional notation with the subscript 

{1,2}i ∈  to reference the two firms. 

 

<Insert Table 1 here> 

 

The time argument will be suppressed in future where no confusion arises. The model 

dynamics are given by  

1 1 2 2 0

2 2 1 1 0

[ ( , ) 1 ( , ) ( )] ( , ) ,   (0) ,

[ ( , ) 1 ( , ) ( )] ( , ) ,   (0) 1 .

dx u x y x u x y x x y dt x y dw x x

dy u x y y u x y y y x dt x y dw y x

ρ ρ δ σ

ρ ρ δ σ

= − − − − + =

= − − − − − = −
 (5) 
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The specification of the dynamics given by equation (5) has the same desirable properties 

of concave response with saturation as the Vidale-Wolfe model. The market share is non-

decreasing with own advertising, and non-increasing with the competitor’s advertising 

expenditure. Consistent with literature, non-competitive decay is proportional to market 

share. As discussed, this churn is caused by influences other than competitive advertising, 

such as a lack of perceived differentiation between brands, so that market shares tend to 

converge in the absence of advertising. Finally, market shares are subject to a white noise 

( , )x y dwσ .  

Since 0dx dy+ =  and since (0) (0) 1x y+ = , this implies that ( ) ( ) 1x t y t+ =  for all 

0t ≥ . Now that ( ) 1 ( )y t x t= − , we need only use the market share of firm 1 to completely 

describe the market dynamics. Thus, ( , )iu x y , 1,2i =  and ( , )x yσ  can be written as 

( ,1 )iu x x−  and ( ,1 )x xσ − . With a slight abuse of notation, we will use ( )iu x  and ( )xσ  

in place of ( ,1 )iu x x−  and ( ,1 )x xσ − , respectively. Thus, 

1 1 2 2 0[ ( ) 1 ( ) (2 1)] ( ) ,   (0)dx u x x u x x x dt x dw x xρ ρ δ σ= − − − − + =   (6) 

with 00 1x≤ ≤ . 

As noted by Sethi (1983), an important consideration when choosing a 

formulation is that the market share should remain bounded within [0,1]  which can be 

problematic given stochastic disturbances. In our model it is easy to see that [0,1]x ∈  

almost surely (i.e., with probability 1) for 0t > , as long as ( )iu x  and ( )xσ  are 

continuous functions which satisfy Lipschitz conditions on every closed subinterval of 

(0,1)  and further that  

( ) 0, [0,1]iu x x≥ ∈        (7) 
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and 

( ) 0, (0,1)x xσ > ∈  and (0) (1) 0σ σ= = .    (8) 

With (7) and (8), we have a strictly positive drift at 0x =  and a strictly negative drift at 

1x = , i.e., 

1 1(0) 1 0 0uρ δ− + >  and 2 2(1) 0uρ δ− − < .    (9) 

Then from Gihman and Skorohod (1973) (Theorem 2, pp. 149, 157-158), 0x =  and 

1x =  are natural boundaries for the solutions of (6) with 0 [0,1]x ∈ , i.e., (0,1)x ∈  almost 

surely for 0t > . 

Let im  denote the industry sales volume multiplied by the per unit profit margin 

for firm i . The objective functions for the two firms are given by  

{ }
{ }

1

1

2

2

2
1 0 1 1 100

2
2 0 2 2 200

1 1 2 2

0

Max ( ) [ ( ) ( ) ] ,

Max ( ) [ (1 ( )) ( ) ] ,

. .

[ ( ) 1 ( ) (2 1)] ( ) ,

(0) [0,1].

r t

u

r t

u

V x E e m x t c u t dt

V x E e m x t c u t dt

s t

dx u x x u x x x dt x dw

x x

ρ ρ δ σ

∞ −

≥

∞ −

≥

= −

= − −

= − − − − +
= ∈

�

�
  

   (10) 

Thus, each firm seeks to maximize its expected, discounted profit stream subject to the 

market share dynamics.  

 

4. Analysis 

 

To find the closed-loop Nash Equilibrium strategies, we form the Hamilton-Jacobi-

Bellman (HJB) equation for each firm:  
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1

2
2 1

1 1 1 1 1 1 1 1 2 2

( ) "
max '( 1 * (2 1)) ,

2u

x V
rV m x c u V u x u x x

σρ ρ δ� �
= − + − − − − +� �

� �
 (11) 

2

2
2 2

2 2 2 2 2 2 1 1 2 2

( ) "
max (1 ) '( * 1 (2 1)) ,

2u

x V
r V m x c u V u x u x x

σρ ρ δ� �
= − − + − − − − +� �

� �
   (12) 

where 
2

2
' , "i i

i i

dV d V
V V

dx dx
= =  and 1 *u  and 2 *u  denote the competitor’s advertising 

policies in (11) and (12), respectively. We obtain the optimal feedback advertising 

decisions 

1 1
1

1

'( ) 1
* ( ) max 0,

2

V x x
u x

c

ρ� 	−= 
 �
 �
� 

 and 2 2
2

2

'( )
* ( ) max 0,

2

V x x
u x

c

ρ� 	
= −
 �
 �

� 
.  (13) 

Since 0 1x≤ ≤  and since it is reasonable to expect 1 ' 0V ≥  and 2 ' 0V ≤ , we can reduce the 

advertising decisions (13) to 

1 1
1

1

'( ) 1
* ( )

2

V x x
u x

c

ρ −=  and 2 2
2

2

'( )
* ( )

2

V x x
u x

c

ρ= − ,  (14) 

which hold as we shall see later. Substituting (14) in equations (11) and (12), we obtain 

the Hamilton-Jacobi equations 

2 22 2
1 1 1 2 2 1

1 1 1 1
1 2

' (1 ) ' ' ( ) "
' (2 1) ,

4 2 2

V x V V x x V
rV m x V x

c c

ρ ρ σδ−= + + − − +   (15) 

2 22 2
2 2 1 2 1 2

2 2 2 2
2 1

' ' ' (1 ) ( ) "
(1 ) ' (2 1) .

4 2 2

V x V V x x V
r V m x V x

c c

ρ ρ σδ−= − + + − − +  (16) 

Following Sethi (1983), we attempt the following forms for the value functions 

1 1 1V xα β= +  and 2 2 2(1 )V xα β= + − .     (17) 

These are inserted into equations (15) and (16) to determine the unknown coefficients 

1 1 2 2, , ,α β α β . Equating powers of x  in equation (15) and powers of 1 x−  in equation 
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(16), the following four equations emerge, which can be solved for the unknown 

coefficients: 

2 2
1 1

1 1 1
1

,
4

r
c

β ρα β δ= +        (18) 

2 2 2
1 1 1 2 2

1 1 1 1
1 2

2 ,
4 2

r m
c c

β ρ β β ρβ β δ= − − −      (19) 

2 2
2 2

2 2 2
2

,
4

r
c

β ρα β δ= +        (20) 

2 2 2
2 2 1 2 1

2 2 2 2
2 1

2
4 2

r m
c c

β ρ β β ρβ β δ= − − −      (21) 

 A unique solution to these equations, together with the requirements that 1 0β >  

and 2 0β > , will be shown to exist. Since for firms having different parameter values, the 

solutions are more complicated, we will first consider the case of two symmetric firms. 

The case of asymmetric firms will be dealt with in section 4.2. 

 

4.1. Symmetric Firms 

For this case, 1 2α α α= = , 1 2β β β= = , 1 2m m m= = , 1 2c c c= = , 1 2ρ ρ ρ= =  and 

1 2r r r= = . The four equations in (18-21) reduce to the following two:  

2 2

2 2

,
4

3
2 .

4

r
c

r m
c

β ρα βδ

β ρβ βδ

= +

= − −
     (22) 

There are two solutions for β . One is negative, which clearly makes no sense. 

Thus, the remaining positive solution is the correct one. This also gives the corresponding 

α . The solution is 
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( )2
2( ) 12 6 12

,
18 6

r W W Rm Rm W Rm W

Rr R

δ
α β

− − + + + −= = , (23) 

where 
2

, 2
4

R W r
c

ρ δ= = + . We can now see that with the solution for the value function, 

the controls specified in equation (13) reduce to (14). This validates our choice of (14) in 

deriving the value function. Note that when the margin 0m = , the firm makes zero profit, 

i.e., the value functions 1V xα β= +  and 2 (1 )V xα β= + −  are identically zero. In turn, 

this implies that the coefficients ,α β  are each zero when 0m = .  

 Table 2 summarizes the analytical results and provides the comparative statics for 

the parameters on outcome variables, with the proofs in Appendix A. Although they are 

excluded from the table, 2 * ( )u y  and 2( )V y , 1y x= − , have the same comparative statics 

as 1 * ( )u x  and 1( )V x , respectively, due to symmetry. 

 

<Insert Table 2 here> 

 

When ρ  increases or c  decreases, i.e., there is a marginal increase in the value of 

advertising or a reduction in its cost, then, as one might expect, the amount of advertising 

increases. However, contrary to what one would expect to see in a monopoly model of 

advertising, the value function decreases. This occurs because in this market all 

advertising occurs from competitive motivations, since the optimal advertising 

expenditure would be zero if a single firm were to own both identical products. 

Advertising does not increase the size of the marketing pie but only affects its allocation. 

Thus, the increase in advertising causes a decrease in the value function.  
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The same logic does not apply when m  increases, or r  decreases. In these cases, 

it is true that the wasteful advertising is increased, but it is also true that the size of the pie 

has increased. Although intuitively it is difficult to predict that the latter effect should 

dominate the former, it turns out to be the case that an increase in m  or decrease in r  

improves the value function.  

The churn parameter δ  reduces competitive intensity. Hence, it might be 

expected that an increase in δ  should increase the profitability by reducing advertising. 

In fact, only the constant α  part of the value functions increases and it is ambiguous 

what happens to the value functions overall. We can derive the exact conditions under 

which there is an increase or a decrease in the value function of a firm due to an increase 

in δ . We find that if the market share of a firm is less than half, the effect on the firm’s 

value function is always positive. However, if the market share of a firm is greater than 

half, its value function can decrease because of an increase in δ  if 

2( 2 ) 12 ( 2 ) 1

6 2

r Rm r
x

r

δ δ+ + − +
> +  is satisfied. The reason is that when a firm has a 

market share advantage over its rival, δ  helps the rival unequally by tending to equalize 

market shares.  

 

4.2. Asymmetric firms 

 We now return to the general case of asymmetric firms. For asymmetric firms, we 

re-express equations (18-21) in terms of a single variable 1β  which is determined by the 

solution to the quartic equation (24): 
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2 4 3 2 2
1 1 1 1 2 1 2 2 1 1 1 1 2 1

2
1 1 2 1 1

3 2 ( ) (4 2 2 )

                     2 ( ) 0

R R W W R m R m W WW

m W W m

β β β
β

+ + + − − +

+ − − =
 (24) 

( )1
1 1 1

1

R
r

βα β δ= +        (25) 

2
1 1 1 1 1

2
1 22

m R W

R

β ββ
β

− −=       (26) 

( )2
2 2 2

2

R
r

βα β δ= +        (27) 

where 
2 2

1 2
1 2 1 1 2 2

1 2

, , 2 , 2
4 4

R R W r W r
c c

ρ ρ δ δ= = = + = + . 

Once we obtain the correct value of 1β  out of the four solutions that will be 

obtained, the other coefficients can be obtained by solving for 1α  and 2β  and then, in 

turn, 2α . The solution is given in Appendix B.  

We now collect the main results of the analysis into Proposition 1. 

 

Proposition 1: For the advertising game described in (10): 

(a) There exists a unique closed-loop Nash equilibrium solution to the differential 

game. (Proof in Appendix B) 

(b) Optimal advertising is 1 1
1

1

1
* ( )

2

x
u x

c

β ρ −= , 2 2
2

2

1
* ( )

2

y
u x

c

β ρ −
= , where in the 

symmetric firm case, from equation (23), 
2

1 2

12

6

W Rm W

R
β β + −= = , and in the 

asymmetric firm case, 1β  and 2β  are given by (B14) and (26). 
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We see that the optimal advertising policy is to spend in proportion to the 

competitor’s market share. Consistent with Sorger (1989) and Erickson (1985), the firm 

that is in a disadvantageous position fights harder than its opponent and it should succeed 

in wresting market share from the opponent. Spending is decreasing in own market share, 

thus, the advertising-to-sales ratio is higher for the lower share firm. As noted in the 

introduction, many firms do advertising budgeting based on the affordable method, the 

percentage-of-sales method, and the competitive-parity method (Joseph and Richardson 

2002, Patti and Blasko 1981, Blasko and Patti 1984). These methods would suggest that 

the firm with lower market share should spend less on advertising. This is in 

contradiction to the optimal advertising policy in the present paper. 

Table 3 provides the comparative statics for α , β  and 1( )V x  with respect to the 

parameters with proofs in Appendix B.  

 

<Insert Table 3 here> 

 

A comparison of the comparative statics in Table 2 and 3 shows the following 

main features. First, due to the additional complexity of the asymmetric case, there are a 

few more ambiguous effects. However, secondly, it appears that the change in own 

parameters has the same effect in the asymmetric case as a change in these parameters 

had for the symmetric case. This is to be expected since the first order effects likely 

dominate the second order effects, thus, yielding the same results as in the symmetric 

case. It becomes clear that a beneficial increase in own parameters ( iρ , ic , im , ir ) have a 

negative effect on the competitor’s profits. Finally, the results for the amount of 
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advertising *iu  are completely unambiguous and follow the same intuition as in the 

symmetric case. Note that the optimal advertising policy does not depend on the noisiness 

of the selling environment. This is a consequence of the linear form of the value function. 

 

4.3. Characterization of the evolution path 

We next examine the market share paths analytically. Inserting the values of the 

controls into the equations of motion (5), one obtains the following set of equations: 

2 2 2
1 1 1 1 2 2

0
1 1 2

2 2 2
2 2 1 1 2 2

0
2 1 2

2 ( ) ,   (0) ,
2 2 2

2 (1 ) ,   (0) 1 .
2 2 2

dx x dt x dw x x
c c c

dy y dt y dw y x
c c c

β ρ β ρ β ρδ δ σ

β ρ β ρ β ρδ δ σ

� 	� 	
= + − + + + =
 �
 �
 �

� � 

� 	� 	
= + − + + − − = −
 �
 �
 �

� � 

 (28) 

These may be rewritten as stochastic integral equations 

2 2 2
1 1 1 1 2 2

0 0 0
1 1 2

2 2 2
2 2 1 1 2 2

0 0 0
2 1 2

( ) ( ) 2 ( ) ,
2 2 2

( ) (1 ) ( ) 2 (1 ) .
2 2 2

t t

t t

x t x x s ds x dw
c c c

y t x y s ds y dw
c c c

β ρ β ρ β ρδ δ σ

β ρ β ρ β ρδ δ σ

� 	� 	
= + + − + + +
 �
 �
 �

� � 

� 	� 	
= − + + − + + − −
 �
 �
 �

� � 

� �

� �

 (29) 

The mean evolution path turns out to be independent of the nature of the stochastic 

disturbance. That is, 

2 2 2
1 1 1 1 2 2

0 0
1 1 2

2 2 2
2 2 1 1 2 2

0 0
2 1 2

[ ( )] [ ( )] 2 ,
2 2 2

[ ( )] (1 ) [ ( )] 2 .
2 2 2

t

t

E x t x E x s ds
c c c

E y t x E y s ds
c c c

β ρ β ρ β ρδ δ

β ρ β ρ β ρδ δ

� 	� 	
= + + − + +
 �
 �
 �

� � 

� 	� 	
= − + + − + +
 �
 �
 �

� � 

�

�

 (30) 

These can be expressed as ordinary differential equations in [ ( )]E x t  and [ ( )]E y t  with the 

solutions given by  
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2 2 2 2
1 1 2 2 1 1 2 2

1 2 1 2

2 2 2 2
1 1 2 2 1 1 2 2

1 2 1 2

2
1 1

( 2 ) ( 2 )
2 2 2 2 1

0 2 2
1 1 2 2

1 2

2
2 2

( 2 ) ( 2 )
2 2 2 2 2

0 2 2
1 1 2 2

1 2

2
[ ( )] (1 ) ,

2
2 2

2
[ ( )] (1 ) (1 ) .

2
2 2

t t
c c c c

t t
c c c c

c
E x t e x e

c c

c
E y t e x e

c c

β ρ β ρ β ρ β ρδ δ

β ρ β ρ β ρ β ρδ δ

β ρ δ

β ρ β ρ δ

β ρ δ

β ρ β ρ δ

− + + − + +

− + + − + +

+
= + −

+ +

+
= − + −

+ +

 (31) 

The long run equilibrium market shares ( , )x y  are obtained by taking the limit as t → ∞  

and are given by 

2 2
1 1 2 2

1 2
2 2 2 2

1 1 2 2 1 1 2 2

1 2 1 2

2 2
,

2 2
2 2 2 2

c c
x y

c c c c

β ρ β ρδ δ

β ρ β ρ β ρ β ρδ δ

+ +
= =

+ + + +
.   (32) 

Thus, the expected market shares converge to the form resembling the attraction 

models commonly used in marketing. However, while an attraction model would rate the 

attractiveness of each firm based on its lower cost, higher productivity of advertising, and 

higher advertising, it would exclude exogenous market phenomena such as churn.  

 To further characterize the evolution path, we next calculate the variance of the 

market shares at each point in time. A specification of the disturbance function is 

required for this. We will use ( ) (1 )x dw x x dwσ σ= − , where σ  is a positive constant 

and, recalling the discussion in Section 3 and equation (8), it can be seen that market 

shares will remain in (0,1) .  

 An application of Itô’s formula to equation (28) provides the following result: 

2 2 2
2 21 1 1 1 2 2

1 1 2

( ( ) ) 2 ( 2 ) (1 ) 2 (1 )
2 2 2

d x t x x x x dt x x x dw
c c c

β ρ β ρ β ρδ δ σ σ
� �� 	

= + − + + + − + −� �
 �
� �� � �

 (33) 
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Rewriting this as a stochastic integral, taking the expected value, and rewriting as a 

differential equation, we get 

2 2 22
2 2 21 1 1 1 2 2

1 1 2

[ ( ) ]
( 2 ) [ ( )] ( 4 ) [ ( ) ]

dE x t
E x t E x t

dt c c c

β ρ β ρ β ρδ σ δ σ= + + − + + + . (34) 

Inserting the solution for [ ( )]E x t  from (31), we obtain a first order linear differential 

equation in the second moment 2[ ( ) ]E x t .  

2 2
1 1 2 2

1 2

2 22
2 21 1 2 2

1 2

2 2 2 2
2 21 1 1 1 1 1 1 1

2( 2 )
2 2 21 11 1 1 1

02 2 2 2
11 1 2 2 1 1 2 2

1 2 1 2

[ ]
( 4 ) [ ]

( )( 2 ) ( )( 2 )
2 2

( 2 )

2 2
2 2 2 2

t
c c

dE x
E x

dt c c

c c c c
e x

c

c c c c

β ρ β ρ δ

β ρ β ρ δ σ

β ρ β ρ β ρ β ρδ δ σ δ δ σ
β ρ δ σ

β ρ β ρ β ρ β ρδ δ

− + +

+ + + +

� 	
+ + + + + +
 �


 �= + + + −

 �

+ + + +
 �
� 

  (35) 

The solution is 

2 2 2 22 2
1 1 2 2 1 1 2 2

1 2 1 2

2 2 2 2
1 1 2 2 1 1 2 2

1 2 1

2 2 2
1 1 1 1

2( 2 ) 2( 2 )
2 2 2 2 2 2 22 1 1

0 2 2 2 22
1 1 2 2 1 1 2 2

1 2 1 2

( 2 ) 2(
2 2 2 2

( )( )
2 2 2

[ ( ) ] (1 )

( 2 )( 2 )
2 2 2 2 2

t t
c c c c

t
c c c c

c c
E x t x e e

c c c c

e e

β ρ β ρ β ρ β ρσ σδ δ

β ρ β ρ β ρ β ρδ

β ρ β ρ σδ δ

β ρ β ρ σ β ρ β ρδ δ

− + + + − + + +

− + + − +

+ + +
= + −

+ + + + +

−+

2

2

2 2
21 1 1 12 )

22
21 1 1 1

02 2 2 2
2 11 1 2 2 1 1 2 2

1 2 1 2

( )( 2 )
2

( 2 ) .

2 2
2 2 2 2

t

c c
x

c

c c c c

σδ
β ρ β ρδ δ σ

β ρ δ σ
β ρ β ρ β ρ β ρδ σ δ

+ +
� 	

+ + +
 �

 �+ + −

 �

+ + + + +
 �
� 

 (36) 

We can calculate the convergence of the second moment, as the influence of the 

initial condition disappears. That is, 

2 2 2
1 1 1 1

2 1 1
2 2 2 22

1 1 2 2 1 1 2 2

1 2 1 2

( )( )
2 2 2

lim [ ( ) ]

( 2 )( 2 )
2 2 2 2 2

t

c c
E x t

c c c c

β ρ β ρ σδ δ

β ρ β ρ σ β ρ β ρδ δ
→∞

+ + +
=

+ + + + +
.  (37) 
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Written in this form, it becomes clear that when 0σ =  the expression is just 2x  

so that the variance is appropriately zero in the absence of stochastic effect. More 

generally, when 0σ = , ( )22[ ( ) ] [ ( )]E x t E x t=  holds for all t . For 0σ >  the standard 

deviation is ( )22[ ( ) ] [ ( )]E x t E x t− .  

Similar results are easily obtained for the second firm. We present the results for 

the mean and variance of the long-run market share in Proposition 2. 

 

Proposition 2: For the advertising game described in (10): 

(a) The mean market shares in the long run are given by (32), 

2 2
1 1 2 2

1 2
2 2 2 2

1 1 2 2 1 1 2 2

1 2 1 2

2 2
,

2 2
2 2 2 2

c c
x y

c c c c

β ρ β ρδ δ

β ρ β ρ β ρ β ρδ δ

� 	
+ +
 �


 �= =

 �

+ + + +
 �
� 

. 

(b) The variance of the market shares in the long run are obtained from (37) and (32) 

as ( )22[ ( ) ] [ ( )]E x t E x t−  and for both firms are given by  

2 2
21 1 2 2

1 2
2 2 2 2

2 21 1 2 2 1 1 2 2

1 2 1 2

( )( ) / 2
2 2

( 2 / 2)( 2 )
2 2 2 2

c c

c c c c

β ρ β ρδ δ σ

β ρ β ρ β ρ β ρδ σ δ

+ +

+ + + + +
. 

 

4.4. Illustration 

Illustrative market shares may be obtained for different parameter values. We 

choose the parameter values 0.05r = , 0.01δ = , symmetric margins 1 2 1m m= = , 

asymmetric firm strengths 1 21, 4R R= =  and an initial starting point at (0) 0.5x = . In 
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practice, a decision calculus approach could be followed to obtain the parameter values. 

Using Mathematica, we find that the only real positive root for the quartic polynomial is 

1 0.264545β =  and the corresponding 2 0.43069β = . Finally, we specify 

( ) (1 )x dw x x dwσ σ= − , with 2 0.5σ = , and use Microsoft Excel to plot equations (28) 

and (31).3  

 

<Insert Figure 1 here> 

 

Figure 1 shows a sample path. One can see that the path hovers around the mean. 

It never stays on the mean as it is continuously disrupted due to the Brownian motion. 

We can calculate a confidence interval if we assume that the path is approximately 

normally distributed around the mean. Then ( )22[ ( )] 1.96 [ ( ) ] [ ( )]E x t E x t E x t± −  

provides the 95% confidence interval for the market share path. While we know that the 

distribution is not normal, nevertheless, as Figure 2 shows, the proposed confidence 

interval does an adequate job of tracking the market shares. Since the normal distribution 

is not bounded between zero and one, the confidence interval may exceed the minimum 

or maximum market share as happened in this case. In the next subsection, we will obtain 

the equilibrium distribution of the market share, which enables us to provide the exact 

confidence intervals for the equilibrium market share. 

 
                                                 
3 To simulate a market share path, the procedure described in Zwillinger (1998, p.702, equation 182.3) was 
used; i.e., for the SDE ( ) ( ) ( ) ( )dx t a x dt b x dw t= + , the numerical approximation is 

( ) ( ) ( ( )) ( ( )) ( )x t x t a x t b x t tς+ ∆ = + ∆ + ∆ . The { ( )}tς  are i.i.d. Normal with mean 0 and variance 

1 generated using Excel’s random number generator (Tools -> Data Analysis -> Random Number 
Generation). The time step was 0.01∆ = . 
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<Insert Figure 2 here> 

 

 This analysis has the value that it provides a diagnostic tool for management to 

handle market share fluctuations. Whereas minor fluctuations within the confidence 

bands may call for cursory examination, overstepping the bands signals the need for a 

detailed review. This is because it may be indicative of a shift in underlying market 

parameters and hence, requires a reevaluation of the advertising spending policies. 

Secondly, the market share fluctuations directly cause fluctuations in advertising 

spending according to Proposition 1 and, hence, one can simulate the advertising budget 

as well. 

 

4.5. Probability distribution of market shares 

We mentioned in the previous section that the probability densities of the market 

shares are not necessarily normally distributed. This raises the obvious question of 

whether the density functions can be determined explicitly, or at least approximated. We 

devote this section to examining this issue.  

 An important property of the solution ( )x t  of an Itô stochastic differential 

equation  

( ) ( , ) ( , ) ( ), ( )dx t a x t dt b x t dw t x s z= + =  

is that it is a Markov process. The transition probability of this Markov process has a 

density ( , ; , )p t x s z  for going from market share z  at time s  to market share x  at time 

t s> , that satisfies the Fokker-Planck equation  

2
2

2

1
( ) ( ) 0

2

p
ap b p

t x x

∂ ∂ ∂+ − =
∂ ∂ ∂

, ( , ; , ) ( )p t x t z x zδ= −  
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(also known as the Kolmogorov forward equation). 

 For our problem, we shall first obtain and then attempt to solve the Fokker-Planck 

equation. To keep the intermediate steps simple, we temporarily make use of the notation 

2
1 1

1
12

A
c

β ρ δ= +  and 
2

2 2
2

22
A

c

β ρ δ= + , and derive the results only for firm 1. Firm 1’s 

stochastic differential equation, from equation (28), is  

1 1 2 0( ( ) ) (1 ) ,   (0)dx A A A x dt x x dw x xσ= − + + − = .    (38) 

The corresponding Fokker-Planck equation is given by  

2
2

1 1 2 2

1
(( ( ) ) ) ( (1 ) ) 0

2

p
A A A x p x x p

t x x
σ∂ ∂ ∂+ − + − − =

∂ ∂ ∂
,   (39) 

which simplifies to  

2 2
2 2 2

1 2 1 1 22

( 1)
((2 ( )) ) ( ( )) 0

2

p x x p p
A A x A A A p

t x x

σ σ σ σ∂ − ∂ ∂+ + − + + − + − + =
∂ ∂ ∂

. (40) 

This partial differential equation could not be explicitly solved. Nevertheless, we 

will attempt to find the density of the steady state market share by lim ( , ; , )
t

p t x s z
→∞

. Let 

( )f x  denote this density, since it can be shown to be independent of s , z  and t . To 

recapitulate, what we started off wanting to know was the density 0( , ;0, )p t x x  of firm 1’s 

market share at time t  given that it starts at a point 0x  at time zero. By looking for the 

long-run stationary probability density of the market share, essentially we are willing to 

ignore the initial transient part of the solution. For density ( )f x , we can set 0
p

t

∂ =
∂

 in 

equation (40) and obtain the second order ordinary differential equation  

2 2
2 2 2

1 2 1 1 22

( 1)
((2 ( )) ) ( ( )) 0

2

x x d f df
A A x A A A f

dx dx

σ σ σ σ− + − + + − + − + = .  (41) 
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A slight rearrangement of terms puts this in canonical form where it is identifiable 

as a Gaussian hypergeometric equation (Polyanin and Zaitsev 2003, p.234): 

( )
2

1 2 1 1 2
2 2 2 2

2( ) 2 2( )
1 4 2 2 0

d f A A A df A A
x x x f

dx dxσ σ σ
� + 	 +� 	 � 	 � 	− + − − − + − =
 � 
 � 
 �
 �
�  �  � � 

. (42) 

We obtain the solution from Polyanin and Zaitsev (2003, p.236, Table 17) to be 

1 2 1 2
2 2 2 2

2 2 2 2
1 1

1 2( ) (1 ) (1 )
A A A A

f x x x C C x x dxσ σ σ σ
−− − −� 	

= − + −
 �
 �
� 

� .  (43) 

To determine the constants of integration, we can employ the following two 

properties. First, the density should integrate to 1 and second, the expected value of the 

market share should be x , which we have already calculated is equal to 1 1 2/( )A A A+ .  

After some reflection, we realize that we can always set 2 0C =  because then 

( )f x  is recognizable as the density of a Beta distribution. The result is given in 

Proposition 3. 

 

Proposition 3: The densities of the stationary distributions of the market shares are given 

by the Beta density as follows: For firm 1,  

1 2
2 2

1 2 2 2
2 2 1 1

1 2
2 2

2 2
( )

( ) (1 )
2 2

( ) ( )

A A
A A

f x x x
A A

σ σσ σ

σ σ

− −Γ +
= −

Γ Γ
,    (44) 

where 1

0
( ) ,  0s xs x e dx s

∞ − −Γ = >�  is the gamma function. For firm 2, by symmetry, f(y) is 

obtained by interchanging x with y and A1 with A2 in (44). 
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(Proof: The density integrates to one by definition, while the mean of the Beta 

distribution is given by 
2

1 1
2 2

1 2 1 2

2 /

2 / 2 /

A A

A A A A

σ
σ σ

=
+ +

 (Mood, et al. 1974). Thus, all the 

required conditions are satisfied.)  

 

As a further check, the variance of the Beta distribution, given by 

2
1 2

2 2
1 2 1 2

/ 2

( / 2)( )

A A

A A A A

σ
σ+ + +

, matches the direct calculation of the variance of firm 1’s 

market share. 

 To see how this may be applied, we now return to the illustrative example of 

section 4.4. Inserting parameter values 1 0.539A = , 2 3.46A =  and 2 0.5σ = , the Beta 

density is  

1.156 12.84 1.156 12.84(16)
( ) (1 ) 292.39 (1 )

(2.156) (13.84)
f x x x x x

Γ= − = −
Γ Γ

. (45) 

We can now compute the 95% confidence intervals: 

1.156 12.84

0

1.156 12.84

0

292.39 (1 ) 0.025 0.02,

292.39 (1 ) 0.975 0.33.

l

m

x x l

x x dx m

− = � =

− = � =

�

�
   (46) 

These provide a more accurate 95% confidence interval for the equilibrium market share 

of firm 1 than by assuming a normal distribution. These are sketched in Figure 2. The 

confidence intervals for firm 2 can be obtained in a similar manner. 
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5. Conclusions 

 

We examined a dynamic duopoly with stochastic disturbances and employ closed-loop 

methods to solve the problem. The model was analyzed using stochastic differential game 

theory and explicit solutions were obtained. The effects of the several different 

parameters were discussed for symmetric and asymmetric firms.  

The paper extends the work of Sethi (1983) to include competitive advertising 

response and the work of Sorger (1989) by including stochastic analysis and a churn term 

in the dynamics that is consistent with the original Vidale-Wolfe formulation and which 

ensures that in the absence of competitive advertising, market shares will converge. The 

effect of churn is not straightforward. That is, its effect can be decomposed into two 

parts; one is to reduce competition by making advertising less effective, hence causing a 

decrease in equilibrium advertising. the other is to disproportionately reduce share of the 

higher market share firm. Thus, higher churn benefits a firm with low market share but 

has ambiguous effects for a higher share firm.  

A simple rule describes the optimal advertising expenditure, which is that it 

should be proportional to the square root of the opponent’s market share (Proposition 1). 

In other words, when the market share of a firm is less, it is necessary to advertise more, 

and vice versa. A large portion of the discussion in Sections 4.1 and 4.2 is devoted to 

determining the proportionality constant, particularly its endogenous component iβ , and 

obtaining an analytical expression for it. While it is given by a simple expression when 

the firms are symmetric, unfortunately, it is not simple to state the proportionality 

constant for asymmetric firms. An explicit formula has been provided in the appendix, 
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however. Furthermore, the dependence of iβ  as well as the amount of advertising is 

provided by means of comparative statics. The comparative statics give directional 

adjustments to make to the amount of advertising in case of parameter changes.  

In Section 4.3, we characterized the evolution path by using stochastic calculus to 

provide the mean and variance of the market shares. The former resembles an attraction 

model. In Section 4.5, we examined the probability distribution for the market shares by 

solving the Fokker-Planck equation in the limiting case and showing that it is the Beta 

distribution. The fact that these commonly used forms for market share emerge 

endogenously from the analysis additionally validates our modeling assumptions. An 

illustration demonstrated the usability of the analysis in terms of tracking the market 

shares (Section 4.4).  

 A few limitations and extensions should be mentioned. The present paper deals 

with a duopoly model of advertising competition. Duopoly models are of significant 

interest since they represent the advertising situation in many markets (Erickson 1992). 

Nevertheless, there are other markets characterized by three or more competitors. 

Extension of the present model and analysis along the lines of Erickson (1995, 2003) and 

Fruchter (1999), to an oligopoly is, therefore, important. Likewise, extending the model 

to incorporate additional decision variables such as price is important (Thompson and 

Teng 1984).  

The comparative statics presented in the paper represent hypotheses for empirical 

testing. Lack of support for the hypotheses would indicate either the need to change 

modeling assumptions or that marketing managers are using suboptimal methods. 

However, whether discrepancies occur due to the validity of the modeling, or 
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suboptimality of marketing practice, they are important to discover. Thus, empirical 

investigation would be fruitful. 
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Appendix A: Proof of Comparative Statics for Table 2 

(a) We start by rewriting 
2 23

2
4

r m
c

β ρβ δβ= − −  from equation (16) as 

2 23
( ) ( 2 ) 0

4
G m r

c

β ρβ δ β≡ − − + = .    (A1) 

Note that / 0G β∂ ∂ < . Hence, for any parameter θ , the implicit function theorem 

/
/

/

G

G

θβ θ
β

∂ ∂∂ ∂ = −
∂ ∂

 implies that ( / ) ( / )sign sign Gβ θ θ∂ ∂ = ∂ ∂ . It follows that β  

decreases when r , δ  or ρ  increase, and increases when m  or c  increase. 

(b) For 1 *u , it is helpful to write 1

1
*

2

x
u

c

ρβ
� 	−= 
 �
 �
� 

 and insert this in (A1) to get 

2
1 1

1

3 * 2 *
( *) ( 2 ) 0

(1 ) 1

cu cu
G u m r

x x
δ

ρ
≡ − − + =

− −
.   (A1) 

Comparative statics with respect to r , δ  and m  are the same as for β . However, 

comparative statics for ρ  and c  are reversed. 

(c) We express α  as 
2 21

4r c

β ρα βδ� 	
= +
 �

� 
. Comparative statics with respect to ρ , 

c , m  and r  are clearly the same as for β . Only the effect of an increase in δ  on α  

needs careful calculation. This is done as follows: 

( )( 6 ) 6 ( )

18 3

( )

r R Rm r m

Rr r

sign sign r

δ β δ βα

α ββ δ
δ δ

− − + − += =

∂ ∂� 	 � 	= + −
 � 
 �∂ ∂�  � 

   (A3) 
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We calculate 
2

2

2 * 2
2

22 12
6 12

W

W Rm
R W Rm

β β
δ

−
∂ −+= =
∂ +

, and insert it into the 

above equation to continue. Thus,  

( ) ( )

2

2

2 ( )

12

12 2( ) 6 3 ,

r
sign sign

W Rm

sign W Rm r sign R r

α β δβ
δ

δ β

� 	∂ −� 	 = −
 �
 �∂�  +� 

= + − − = +

   (A4) 

which is positive. 

(d) Since 1( )V x xα β= + , whenever comparative statics for α  and β  are in the 

same direction, 1( )V x  also has identical comparative statics. Thus, we need only to 

calculate the comparative statics with respect to δ . Let us observe that  

( )
( ) ( )

2

2 2

2

2

2

2

1
( 3 ) 12 6

18

2( 3 )
12 12

12

2( 3 )
1 12 3 (1 2 )

12

( 2 ) 12 ( 2 ) 1
.

6 2

i

i

V x r rx W Rm W Rm
Rr

V r rx
sign sign W Rm W W W Rm

W Rm

r rx
sign sign W Rm W r x

W Rm

r Rm r
sign x

r

α β δ

δ
δ

δ

δ δ

� �= + = − + + − +� �� �

� �∂ − +
� = + − + − +� �∂ +� �

� �− + � �= − = + − + −� � � �+� �

� �+ + − +
= + −� �

� �� �

 

 (A5) 

If 1/ 2x ≤ , the sign is positive. If 
2( 2 ) 12 ( 2 )

1/ 2
6

r Rm r
x

r

δ δ+ + − +
> + , the sign 

is negative.  
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Appendix B: Proof of Uniqueness of Solution 

We want to show that there exists a unique solution to the differential game. This 

implies showing that there exists a unique 1 2( , )β β  that satisfies 

2 2 2
1 1 1 2 2

1 1 1 1
1 2

2 ,
4 2

r m
c c

β ρ β β ρβ β δ= − − −      (B1) 

2 2 2
2 2 1 2 1

2 2 2 2
2 1

2
4 2

r m
c c

β ρ β β ρβ β δ= − − −      (B2) 

1 0β >  and 2 0β > .       (B3) 

We begin by reducing (B1) and (B2) to a quartic equation in 1β , 

2 4 3 2 2
1 1 1 1 2 1 2 2 1 1 1 1 2 1

2
1 1 2 1 1

3 2 ( ) (4 2 2 )

                     2 ( ) 0.

R R W W R m R m W WW

m W W m

β β β
β

+ + + − − +

+ − − =
 (B4) 

This may be rewritten in its simplest form as 

4 3 2
1 1 1 1 2 1 3 1 4( ) 0F β β κ β κ β κ β κ≡ + + + − = ,    (B5) 

where, 

( ) ( )2 2
2 2 1 1 1 1 2 1 1 21 2 1

1 2 3 42 2 2
1 1 1 1

4 2 2 22( )
, , ,

3 3 3 3

m R m R W WW m W WW W m

R R R R
κ κ κ κ

− − + −+= = = = .

 (B6) 

 Every quartic equation has four roots. Excluding the fortuitous cases where two or 

more roots are equal, the following results are easily observed. 

1. When 1β → ±∞ , 1( )F β → ∞  and when 1 0β = , 1( ) 0F β < . Since 1( )F β  is 

differentiable, it is continuous. Thus, it must cross the x-axis at least twice 

ensuring at least one positive and one negative real root. If there are only two real 
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roots, one will be positive and one negative. If all four roots are real, they will be 

either three positive and one negative, or three negative and one positive.  

2. In the case of three real positive roots, ordering them from the smallest to the 

largest, the slope at the second largest root must be negative. To see this, write 

1 1 1 1 1 1 1 1 1( ) ( (1))( (2))( (3))( (4))F β β β β β β β β β= − − − − , where 1(1) 0β < , 

1(2) 0β > , 1 1(3) (2)β β> , 1 1(4) (3)β β>  are the four roots. Then, the slope at 

1(3)β , 
1 1

1 1 1 1 1 1 1(3)
'( ) ( (3) (1))( (3) (2))( (3) (4))F β ββ β β β β β β

=
= − − − , is negative.  

3. We can calculate the slope 1'( )F β  directly from equation (B4) and evaluate it at 

any positive real root. The following steps differentiate (B4) and then reapply 

equation (B4) to obtain a simpler expression:  

1
1

1 (0)

2 3 2 2
1 1 1 1 2 1 2 2 1 1 1 1 2 1 1 1 2

2 4 3 2 2
1 1 1 1 2 1 2 2 1 1 1 1 2 1 1 1 2 1

1

2 4 3
1 1 1 1 2 1 1 2 1 1 1 1 1

1

'( )

12 6 ( ) 2(4 2 2 ) 2 ( )

2
[6 3 ( ) (4 2 2 ) 2 ( )

2
[3 ( ) ( )] 0

F
F

R R W W R m R m W WW m W W

R R W W R m R m W WW m W W

R R W W mW m m W

ββ

β β β

β β β β
β

β β β β
β

−=

= + + + − − + + −

= + + + − − + + −

= + + + + − >

  (B7) 

The last expression is positive since from (B3), 1 1 1m Wβ> .  

It follows from points 2 and 3 above that there is only one real positive root and, 

hence, a unique solution to the differential game. 

To obtain an explicit solution, we utilize the Mathematica 4.1 software to generate 

four solutions to (B5): 

32
2 1 1 2 31 1

1 2

4 81 3
(1) 2

4 2 2 4 4

g
g

g

κ κ κ κκ κβ κ − + −= − −− −−−   (B8) 
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32
2 1 1 2 31 1

1 2

4 81 3
(2) 2

4 2 2 4 4

g
g

g

κ κ κ κκ κβ κ − + −= − −− −+ −   (B9) 

32
2 1 1 2 31 1

1 2

4 81 3
(3) 2

4 2 2 4 4

g
g

g

κ κ κ κκ κβ κ − + −= − + − − +−   (B10) 

32
2 1 1 2 31 1

1 2

4 81 3
(4) 2

4 2 2 4 4

g
g

g

κ κ κ κκ κβ κ − + −= − + + − − +   (B11) 

Where two intermediate terms g  and h  are defined below.  

22 1/3
2 1 3 41 2

1/3

2 ( 3 12 )2

4 3 3 32

h
g

h

κ κ κ κκ κ − −≡ − + +    (B12) 

( )1/3
3 2 2 2 3 2 23 2

2 1 2 3 3 1 4 2 4 2 1 3 4 2 1 2 3 3 1 4 2 42 9 27 27 72 4( 3 12 ) (2 9 27 27 72 )h κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ≡ − + − + + − − − + − + − +

  (B13) 

We pick 1β  as the only real positive solution out of the four roots, i.e,  

1 1 1( *), where * { {1,2,3,4} | ( ) 0}i i i iβ β β= = ∈ > .   (B14) 

While i* may depend on the data, there will only be one i* in every case.  
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Appendix C: Proof of Comparative Statics for Table 3 

(a) To obtain comparative statics for iβ , we define  

2 2 2
1 1 1 2 2

1 1 2 1 1 1
1 2

2 2 2
2 2 1 2 1

2 1 2 2 2 2
2 1

( , ) ( 2 ) 0,
4 2

( , ) ( 2 ) 0.
4 2

G m r
c c

G m r
c c

β ρ β β ρβ β β δ

β ρ β β ρβ β β δ

≡ − − − + =

≡ − − − + =
  (C1) 

Then, for any parameter θ , we use the implicit function theorem (Simon and Blume 

1994, p.354): 

1

1 11 1

1 2

2 2 2 2

1 2

G G G

G G G

β
β βθ θ

β
θ β β θ

−∂ ∂� 	∂ ∂� 	 � 	

 �
 � 
 �∂ ∂∂ ∂
 �= −
 � 
 �

 �∂ ∂ ∂ ∂
 � 
 �


 � 
 �
 �∂ ∂ ∂ ∂�  � � 

.    (C2) 

With some calculation, this can be written as 

2 2 2
2 2 1 1 1 21 1

2
2 1 2

2 2 2
2 22 1 1 1 2 2

1
1 1 2

( 2 )
2 2 21

( 2 )
2 2 2

Gr
c c c

G
r

c c c

β ρ β ρ β ρβ δ
θ θ
β β ρ β ρ β ρ δθ θ

� 	∂ ∂� 	 � 	− + + +
 �
 � 
 �∂ ∂
 �= −
 � 
 �

 �∂ ∂∆
 � 
 �

 �
 � 
 �− + + +
 �∂ ∂�  � � 

, (C3) 

where, 0∆ > . It can be shown in a straightforward manner that  

1 1 1 1 1 1 1

2 1 2 1 2 2

0, 0, 0, 0, 0, 0, 0
c m m r r

β β β β β β β
ρ δ

∂ ∂ ∂ ∂ ∂ ∂ ∂> > < < > < <
∂ ∂ ∂ ∂ ∂ ∂ ∂

.  (C4) 

However, the cases for 1c  and 1ρ  are ambiguous:  

2 2
1 1 1 2 2

2
1 1 2

2 2
1 1 1 2 2

2
1 1 2

( ) [ 2 ],
2 2

( ) [ ( 2 )].
2 2

sign sign r
c c c

sign sign r
c c

β β ρ β ρ δ

β β ρ β ρ δ
ρ

∂ = − + +
∂

∂ = − − + +
∂

   (C5) 
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(b) For comparative statics for 1 *u , we insert 1 1 2 2
1 2

1 1

1
* , *

2 2

x x
u u

c c

β ρ β ρ−= =  

into (C1) to obtain 

2
1 1 1 1 2 2 1 1 1

1 1 2 1

1 1

2
2 2 2 1 2 1 2 2 2

2 1 2 2

2 2

* 2 * * 2 * ( 2 )
( *, *) 0,

1 1 1

* 2 * * 2 * ( 2 )
( * , *) 0.

1

c u c u u c u r
G u u m

x x x x

c u c u u c u r
G u u m

x x x x

ρ δ
ρ ρ

ρ δ
ρ ρ

+≡ − − − =
− − −

+≡ − − − =
−

  (C6) 

Then, the implicit function theorem can be written as 

2 2 2 1 1 2 2 1 1 21 1

2 2 1

2 2 2 1 1 1 1 2 2 1 1 2

2 1 1

2 2 2 ( 2 ) 2* ( )
1 11

,
* 2 2 2 2 ( 2 )

( )
11 1 1

c u c u c r c uu G
x x x x x x

u c u c u c u c r G

xx x x x x

ρ δ ρ
ρ ρ ρθ θ

ρ ρ δ
θ θρ ρ ρ

+� 	∂ ∂� 	 � 	− + +
 �
 � 
 �− −∂ ∂
 �= −
 � 
 �

 �∂ + ∂∆
 � 
 �− + +
 � 
 �
 �
 �∂ − ∂�  � − − −� 

     (C7) 

where 0∆ > . The calculations are straightforward, and we provide only the results here: 

1 1 1 1 1 1 1 1 1

1 2 1 2 1 2 1 2

* * * * * * * * *
0, 0, 0, 0, 0, 0, 0, 0, 0.

u u u u u u u u u

c c m m r r ρ ρ δ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂< > > < < > > < <
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 (C8) 

 (c) For 1α , we note from equation (25) that in many cases 1α  will have the same 

comparative statics as 1β . These relationships are as follows: 

1 1 1 1 1 1

2 1 2 1 2 2

0, 0, 0, 0, 0, 0
c m m r r

α α α α α α
ρ

∂ ∂ ∂ ∂ ∂ ∂> > < < > <
∂ ∂ ∂ ∂ ∂ ∂

.  (C9) 

The cases for 1c , 1ρ  and δ  are unclear.  

 (d) The unambiguous results for 1V  occur when comparative statics for 1α  and 1β  

are in the same direction, which is true for all parameters except 1c , 1ρ  and δ . 
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Table 1: Notation 

( ) [0,1]x t ∈  Market share for firm 1, 0(0)x x= . 

( ) 1 ( )y t x t= −  Market share for firm 2, 0(0) 1y x= − . 

( ( ), ( ), ) 0iu x t y t t ≥  Advertising rate by firm i  at time t . 

0iρ >  Advertising effectiveness parameter for firm i . 

0δ >  Market share decay or churn parameter. 

0ir >  Discount rate for firm i . 

( ( ))iC u t  Cost of advertising, parameterized as 2( ) , 0i i ic u t c > . 

( ( ), ( )) ( )x t y t dw tσ  Disturbance function with standard white noise. 

iV  Value function for firm i . 

,i iα β  Components of the value function. 

2 / 4 , 2i i i i iR c W rρ δ≡ ≡ + , 

2

2
i i

i
i

A
c

β ρ δ≡ +  

 

Some useful intermediate terms. 
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Table 2: Comparative Statics with Symmetric Firms (Proofs in Appendix A) 

Variables Parameters 

Note, 
2

, 2
4

R W r
c

ρ δ= = + . 
c  ρ  m  δ  r  

( )2( ) 12 6

18

r W W Rm Rm

Rr

δ
α

− − + +
=  

+ - + + - 

2 12

6

W Rm W

R
β + −=  

+ - + - - 

2

1

( 12 ) 1
*

12

W Rm W x
u

Rc

ρ+ − −=  
- + + - - 

Value function, 1( )V x xα β= +  + - + ? - 

Legend: increase (+), decrease (-), ambiguous (?)  
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Table 3: Comparative Statics with Asymmetric Firms (Proofs in Appendix C) 

Variables Parameters 

 ,i jc c  ,i jρ ρ  ,i jm m  δ  ,i jr r  

iα  ? , + ? , - + , - ? - , + 

iβ  ? , + ? , - + , - - - , + 

*iu  - , + + , - + , - - - , + 

( )iV x  ? , + ? , - + , - ? - , + 

Legend: increase (+), decrease (-), ambiguous (?) 
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Fig. 1. Market Share Trajectories given Optimal Advertising Decisions 
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Fig. 2. Market Share for Firm 1, Normal density 95% Confidence Interval (dashed lines), 

and Equilibrium Market Share 95% Confidence Interval (dotted lines) 
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