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SUMMARY

This study extends the literature of dynamic advertising competition by allowing oligopoly competition and
market expansion that results from advertising. We "nd how advertising actions a!ect market development
and how, conversely, market development in#uences advertising policies over time. Modelling the competi-
tion by a di!erential game, we solve for both time-variant closed-loop and time-invariant feedback Nash
equilibrium strategies. The time-variant closed-loop strategy depends on a "rm's own sales rates and the
time-invariant feedback strategy depends on the growth of the market. We discuss the marketing implica-
tions of the results. Copyright ( 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This study attempts to determine the optimal (pro"t-maximizing) levels of investments in
marketing activities (such as advertising) in a competitive and dynamic market which has the
potential for market growth. Empirical examples illustrating the importance of advertising in
competitive markets can be found in Carpenter et al.1 and Little.2 We consider the case where the
players focus their marketing activities to attract sales from each other and from outside the
competition.

Di!erential games provide an appropriate framework for analysing dynamic marketing expen-
diture decisions in a competitive setting. We chose the Lanchester combat model to describe the
dynamics of the competition resulting from "rms' marketing e!orts to attract sales from
competitors. This model was "rst applied by Kimball3 to a combat problem, then by Vidale and
Wolfe4 as a sales-advertising response model, and by Isaacs,5 Horsky,6 Little,2, Case,7 Deal et
al.,8 Deal,9 Sorger,10 Chintagunta and Vilcassim,11 Erickson,12~15 and Fruchter and Kalish16 to
"nd optimal advertising strategies in a dynamic, competitive market. Chintagunta and Vilcas-
sim11 and Erickson14 provide empirical evidence that a closed-loop solution "ts the data better
than an open-loop solution.

A drawback of all the above studies is that they make the key assumption of "xed total industry
sales. This assumption limits the model to a mature, saturated market, i.e. where the total
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sThe literature adopting the Lanchester model usually works with market shares. Since here we work with sales, the
extended model which will be introduced can perhaps be more related to the Vidale-Wolfe4 model.

saturated industry sales are the same as the total current industry sales. Moreover, this strong
assumption ignores the possibility that advertising by itself can expand the whole target market.
The present paper sheds light on this issue by addressing questions such as: Does competitive
advertising extend the market? If the answer is yes; by how much? How much should an
oligopolist invest in advertising under such conditions?

Developing a dynamic sales response model for oligopolistic competition, we show that the size
of the whole market grows exponentially with the aggregate e!ectiveness of all competitors'
e!orts. Generating a suitable di!erential game we derive open- and closed-loop Nash equilibrium
strategies, and explain the relationship between them. The closed-loop strategy of each player has
the property of being proportional to the open-loop strategy, which is time-variant, and to the
square of the player's potential target market. This structure provides a formula for a practical
adaptive control rule. Finally, we "nd a time-invariant Nash equilibrium feedback strategy that
depends on the growth of the market, which has an analytic solution in the case of zero discount.
We summarize the contributions of this paper as follows: (a) it generalizes the previous duopoly
results of Fruchter and Kalish16 to an oligopoly which allows market expansion; (b) it provides
a time-invariant feedback Nash equilibrium solution for oligopoly growing markets.

2. MODEL DESCRIPTION

We consider an industry in an oligopoly market where n competitors use advertising (as their
major marketing instrument) to attract customers from each other as well as from the new
customers, in their e!orts to maximize their discounted pro"ts over the planning horizon.
Assuming an in"nite planning horizon, the problem of oligopolist k, k3M1,2, nN, is to develop an
advertising strategy that will maximize the present value of the "rm's pro"t stream, as given by
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(q
k
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k
(t)!u2
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(t))e~rtdt, k"1,2, n (1)

In formula (1), s
k
(t) represents the sales rate of "rm k at time t; q

k
is the gross pro"t rate; the

quantity u2
k
(t) represents the advertising expenditure of "rm k at time t, identifying u

k
(the square

root of the advertising expenditure of "rm k) with the advertising e!ort of the competitor k; and
r is the discount rate. For simplicity we assume that all the "rms have the same discount rate.

There is a dynamic relation between the rate of change in sales and the competitors' simulta-
neous advertising e!orts to attract and generate sales. In a duopoly, a well-known relation which
captures the above dynamics in the form of a di!erential equation, is the Lanchester combat
model. Previous studies have used this model only under the restriction of "xed market size. This
assumption limits the model to the particular case of a mature market, where marketing activities
have the potential only to switch customers from one competitor to another, i.e. where the
competing "rms deal only with market penetration.

Here, we dispense with this strong limitation, and broadening the Lanchester models to
oligopoly competition, we allow for the situation in which marketing activities have the potential
to generate new customers, that is to bring about market expansion. Let the term oiuk(t) denote the
e!ectiveness of the advertising e!orts of "rm k, k3M1, 2,2, nN, in attracting potential sales at time
t. The constant oi is related to media of advertising and to consumers' brand perceptions and
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preferences. The model would be more accurate if we could di!erentiate between the e!ectiveness
of advertising in attracting customers from each of the competitors and in generating new
customers. However, if we allowed for this distinction, we would obtain a more complex
mathematical problem. Moreover, the number of parameters in the model would increase with
the number of brands competing in the market. Di$culty in estimating all the parameters would
render a multi-parameter model unworkable, and so we sacri"ce this re"nement in favour of
simplicity and empirical implementability.

Let m be a parameter which represents the saturation level of the market or, in other words, the
limit of the entire industry sales that can be generated as a result of marketing activities. Let e(t) be
the market potential at time t, i.e. the di!erence between the saturation level of the market and the
total present industry sales at time t. Then

m"

n
+
k/1

s
k
(t)#e(t) (2)

Using the above notation in order to examine changes in the total industry sales as a result of
marketing activities, we consider the extended Lanchester oligopoly model
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In other words, changes in the sale rates of brand k are a result of the advertising e!orts on
potential sales of "rm k and the simultaneous opposite e!orts of the rivals to generate brand
switching. This model does not include customer retention activities.

2.1. Market expansion

Taking the derivative of (2) with respect to t and making use of (3), we obtain
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Integrating (4), we obtain
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n
+
k/1
P

t

0

o
k
u
k
(q) dqD (5)

where :t
0
o
k
u
k
(q) dq represents the cumulative advertising e+ectiveness of ,rm k's e+orts.

Remark 1

Since e(t)"m!+m
k/1

s
k
(t) represents the market potential at time t, formula (5) demonstrates

that the market potential in our model is a function of advertising e+orts of all players.

Denote the total industry sales by I(t), i.e.

I(t)"
n
+
k/1

s
k
(t)"m!e(t) (6)

Considering equations (5) and (6) we obtain the following result.
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Proposition 1

¹he total industry sales, I(t), increases exponentially with the aggregate cumulative advertising
e+ectiveness of all the competitors' e+orts.

In other words, the competition and accompanying advertising activities are the factors that
contribute to market expansion. We also deduce that when there are marketing activities with
positive e!ects the market always increases up to the saturation level. In the case of negative
e!ects the total industry may decline. Considering (5) and (6), we have

e(R)"0 and I(R)"m (7)

which means that in case of positive e!ects of advertising, the market will attain its saturation
level at the steady state.

2.2. Fixed market size

The particular case of ,xed total industry sales corresponds to

IQ (t)"0, I(0)"
n
+
k/1

s0
k
. (8)

Considering (4) and (6), this may happen if I(t)"m, i.e. when the market is at its saturated level. In
other words, the assumption made in earlier Lanchester models, that the total industry is "xed, is
a particular case of our new model. Since the condition of "xed market size is a strong
assumption, the proposed model enables us to model conditions that occur commonly in the
marketplace.

2.3. The diwerential game

Considering equations (1) and (3), we obtain that oligopolist k's problem, k"1,2, n, is
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Let

x
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s
k

m
(10a)

be the fraction of the brand k sales relative to the saturation level of the market, or the saturated
market share of "rm k, and let
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then (9) becomes
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A control function u
k
(t), k"1,2, n, is an admissible control if it is nonnegative and bounded in

[0,R). For such controls, the state equation reveals that 0)s
k
(t))m.

For the di!erential game (9) we want to "nd Nash equilibrium closed-loop strategies, that is
strategies which are responses to market measurements, s

k
, k"1,2, n. Such strategies have the

ability to capture current changes in the market, i.e. they are realistic strategies for a dynamic
competitive market. In addition, by being responsive to actual measurements of sales, they have
the advantage of capturing changing conditions in the market that are not captured by the model.

3. DETERMINATION OF THE CLOSED-LOOP STRATEGIES

We now present the derivation of closed-loop strategies, i.e., strategies of the form
u*
k
"u*

k
(t, s

1
,2, s

n
, s0

1
,2, s0

n
). For this objective we use formulation (11) for the di!erential game.

Let u(t) satisfy the following two-point boundary-value problem (TPBVP):
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Let x
k
be as in (11). Then, as shown in the Appendix I, we are able to construct the time-variant

closed-loop strategies
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), k"1,2, n (14)

where s
k
is as in (9).

Next, we prove that the closed-loop strategy de"ned in (13) (or (14)) forms a global Nash
equilibrium strategy for the di!erential game associated with (11) (or (9)).

Theorem 1

Consider the di+erential game associated with (9) or (11)). ¹hen (u*
1
,2, u*

n
) de,ned in (13) and/or

(14) forms a global Nash equilibrium closed-loop strategy for the above di+erential game.

Proof. See Appendix II. K

3.1. The open-loop vs. the closed-loop: discussion

As shown in Appendix I, the open-loop strategies are
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where u(t) and x*
k

are as in (12). Comparison of the open- and closed-loop strategies reveals
a close similarity. In fact we have
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Relationship (17) provides an important practical control rule; once we have derived the
open-loop solution, which means solving the two-point boundary-value problem (TPBVP) (12),
then the closed-loop solution is obtained simply by updating formula (14) by the real-time
measurements s

k
(t). In strategic planning, formula (17) has the following advantage. The open-

loop strategy can be derived in advance for the entire planning period. Then, during the
implementation phase, when time is at a premium, and actual sales "gures become available, the
strategy can be rapidly modi"ed to generate a closed-loop strategy for a particular time-period.
Formula (17) can also be regarded as the rule that adapts prediction (16) to current market
conditions. Note that, in the particular case when the market is saturated (i.e. total industry sales
are "xed and equal to m) and n"2, this result coincides with that of Fruchter and Kalish.16

3.2. Analysis of the closed-loop solution

The closed-loop advertising strategy of our model is an own-brand sales response. We shall
examine the behaviour of the equilibrium closed-loop advertising strategy (14). We learn that
equilibrium advertising, u*2

k
, is proportional to the square of potential sales, (m!s

k
)2. If the sales

of the "rm increase, then its potential sales decrease. In Note 2 in Appendix I we show that u(t)ert
decreases when sales increase, and therefore (14) reveals that the advertising expenditure of the
"rm targeted to attract potential sales should decrease if the sales of the "rm increase.

Proposition 2

In a competitive growing dynamic market, ,rms should decrease their o+ensive advertising
expenditures as their own sales increase or, equivalently, as their potential sales decreases.

Another property of the strategy under examination is that the time-variant coe$cient, u(t)ert,
is the same for all "rms.

Proposition 3

¹he ratio of the advertising expenditures of any two ,rms in competition is time-invariant, and
depends only on the ratios of their advertising e+ectiveness, gross pro,t margins and on their
potential sales.

4. A TOTAL SALES FEEDBACK STRATEGY

We now wish to develop a time-invariant feedback strategy for the di!erential game associated
with (9) or (11) which depends on the size of the market.

Theorem 2

Consider the di+erential game associated with (9) (or (11)). ¸et
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and suppose f (z) satis,es the following backward di+erential equation:
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¸et uL *
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, k"1,2, n, be a function of z, such that,

uL *
k
"1

2
o
k
Q

k
f (z)(1!z)"1

2
o
k
q
k
f A

1

m

n
+
k/1

s
kBAm!

n
+
k/1

s
kB, k"1,2, n (20)

¹hen (uL *
1
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n
) forms a time-invariant feedback Nash equilibrium strategy for the above di+erential

game.

Proof. See Appendix III. K

Remark 2

If r"0, (19) can be integrated analytically. We thus obtain
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As a result (20) becomes
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Considering (22) we learn that for a zero discount rate the equilibrium advertising strategy, uL *2
k

,
decreases linearly with the actual total industry sales.

If r'0, (19) can be integrated numerically. Simulation shows that the equilibrium advertising
strategy decreases nonlinearly with the actual total industry sales.

Proposition 4

In a competitive growing dynamic market, if the ,rms only are aware of total market sales,
considering only the e+ects of o+ensive strategies, then they should decrease their advertising
expenditures as the total industry sales increase.

6. CONCLUSIONS AND IMPLICATIONS FOR FUTURE RESEARCH

Much has been published on competitive advertising using the Lanchester model to capture the
dynamics of sales. Until now, the research has produced dynamic market share response models
that are restricted to a saturated market, which is not always appropriate. The present study
removes this assumption from the Lanchester model by de"ning a dynamic sales response model.
The new model broadens the Lanchester model to take into account a market where the total
industry has the potential to grow as a result of advertising activities, thus "lling a major gap in
our ability to represent conditions that commonly occur in the marketplace.

While the current study greatly broadens the market conditions that we are able to model, it
also points to further gaps. There is a need for a model that incorporates external disturbances in
the market whose in#uence runs counter to the objectives and marketing e!orts of the "rms.
Market disturbances due to such factors will explain how total industry sales may decline even in
the face of aggressive marketing*as may indeed occur in the marketplace. Another logical
expansion of this study would be to "nd a defensive (retention) strategy that could operate
simultaneously with the o!ensive (acquisition) strategy.
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tIndeed plugging x
k
"0 (or s

k
"0, as x

k
"s

k
/m) into (26) we obtain xR

k
'0 (or sR

k
'0), and j

k
"0 into (27) we obtain

j0
k
(0; therefore the trajectory which satis"es (26) and (27) should belong to region I.
AEquation (29) follows immediately by substituting (28) and its derivative with respect to t into (27). Equivalently,

considering (28) and (29) one can obtain back (27).

APPENDIX I: DERIVATION OF THE OPEN- AND CLOSED-LOOP STRATEGIES

I.1. The algorithm of constructing the closed-loop strategies

Considering the di!erential game associated with (11), we "nd that the current value Hamil-
tonian of player k is given by, cf. Kamien and Schwartz17,
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where j
k

is the adjoint variable or, in our context, the marginal value of having the constraint
relaxed by one unit. The necessary optimality conditions are given by
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and the adjoint equation is
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Substituting (24) into (11) and (25), the following two-point boundary-value problem (TPBVP)
is obtained:
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Note 1

From the phase-plane portrait of equations (26) and (27), described in Figure 1, we see that the
trajectory that satis,es the necessary conditions belongs to region I.t

To "nd the values for u
k
that produce a stationary value for %

k
, we must solve the TPBVP (26)

and (27)). We will use the notation x*
k

for the value of x
k
that solves (26) and (27). Let

j
k
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In terms of the new variable u(t), (27) becomesA
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j
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(t))u2(t)ert!ert, u(R)"0. (29)

I.2. The role of (29)

Equation (29) replaces the set of n equations in (27). In this way we considerably reduce the
complexity of the computation required to solve the TPBVP ((26) and (27)). In conclusion, the
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Figure 1. Phase-plane portrait of equations (26) and (27)

TPBVP ((26) and (27)) of 2n equations is equivalent to the following TPBVP of n#1 equations,
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I.3. The open-loop strategy

Let u(t) and x*
k

be as in (30). Then the open-loop strategies are given by
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I.4. The closed-loop strategy

Let u(t) be as in (30) and let x
k

be as in (11). Then the closed-loop strategies are given by
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where s
k
is as in (9).

Note 2

Considering Note 1, (28) and (34), if s
k

increases then u(t)ert decreases, and consequently
u*
k

decreases.
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APPENDIX II: PROOF OF THEOREM 1

Consider the zero sum

0"!Q
k
u(t)x

k K
=

0

#P
=

0

d

dt
(Q

k
u(t)x

k
) dt (35)

where u(t) is as in (29), and x
k
as in (3). From (35) we obtain

0"Q
k
u(0)x0

k
#P

=

0

[Q
k
uR (t)x

k
#Q

k
u(t)xR

k
] dt (36)

Using equation (11) for xR
k
, we obtain

0"Q
k
u(0)x0

k
#P

=

0
CQk

uR (t)x
k
#Q

k
u(t)Aok

u
k
!x

k

n
+
j/1

o
j
u
jBDdt (37)

Considering equation (29) for u5 , we obtain

0"Q
k
u(0)x0

k
#P

=

0
G
1

2
Q

kC
n
+
j/1

o2
j
Q

j
(1!x*

j
)u2(t)ert!e~rtDxk

#Q
k
u(t)(q

k
u
k
!x

k

n
+
j/1

q
j
u
jBHdt

(38)

Considering (31)}(34), equation (36) becomes
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,2, u

k
) in (11), we obtain

%
k
(u,2, u

n
)"Q

k
u(0)x0

k
#P

=

0
C!(u

k
!u*

k
)2#u*2

k
!2uOL

k
u*
k
#Q

k
o
k
u(t)ertuOL

k

#2
n
+
j/1
jOk

o
j
(u

j
!uOL

j
)(u*

k
/o

k
)!Q

k
u(t)ert

n
+
j/1
jOk

o
j
(u

j
!uOL

j
)De~rtdt (40)

Particularly,

%
k
(u*

1
,2, u*

n
)"Q

k
u(0)s0

k
#P

=

0
C(u*2k !2uOL

k
u*
k
#Q

k
o
k
u(t)ertuOL

k

#2
n
+
j/1
jOk

o
j
(u*

j
!uOL

j
)(u*

k
/o

k
)!Q

k
u(t)ert

n
+
j/1
jOk

o
j
(u*

j
!uOL

j
)De~rtdt (41)
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Considering (40) and (41), we have

%
k
(u*

1
,2, u*

k~1
, u

k
, u*

k`1
,2, u*

n
)"Q

k,
u(0)x0

k
#P

=

0

!(u
k
!u*

k
)2#u*2

k
!2uOL

k
u*
k

#Q
k
o
k
u(t)ertuOL

k
#2C

n
+
j/1
jO1

o
j
(u*

j
!uOL

j
)(u*

k
/o

k
)

!Q
k
u(t)ert

n
+
j~1
jOk

o
j
(u*

j
!uOL

j
)De~rtdt

"%
k
(u*

1
,2, u*

n
)!P

=

0

(u
k
!u*

k
)2e~rtdt)%

k
(u*

1
,2, u*

n
) (42)

for every u
,
. This completes the proof of our theorem. K

APPENDIX III: PROOF OF THEOREM 2

The current value Hamiltonians of this problem are

H
k
"Q

k
x
k
!u2

k
#

n
+
i/1

ji
kAoi

u
i
!x

i

n
+
j/1

o
j
u
jB, k"1, 2,2, n (43)

and ji
k
, i, k"1, 2,2, n are the co-state variables of this problem. Setting LH

k
/Lu

k
"0, k"1,

2,2, n, one "nds

uL
k
"

1

2
o
kAjk

k
!

n
+
i/1

ji
k
x
iB (44)

Making the identi"cations ji
k
"<k

xi
"L<k/Lx

i
, and substituting control functions (44) into (43),

one obtains the Hamilton}Jacobi}Bellman (HJB) equations

m
k
#r< k"q

k
x
k
!uL 2

k
#

n
+
i/1

<k
xiAoi

uL
i
!x

i

n
+
j/1

o
j
uL
jB, k"1, 2,2, n (45)

where

uL
k
"

1

2
o
kA< k

xki
!

n
+
i/1

<k
xi
x
iB (46)

and m
k

is an arbitrary real constant as above. The equations in (45) constitute a system of
n simultaneous non-linear partial di!erential equations of the n unknown functions
<k(x

1
, x

2
,2,x

n
), k"1, 2,2, n. Since this is a very di.cult problem we want to "nd a special

solution for which <k
xj
"<k

xk
, k, j"1,2, n, and in this way simplify (45) and (43). More exactly,

we want to "nd a function F(z), where

z"x
1
#x

2
#2#x

n
(47)
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such that (45) will admit the solutions

<k(t, x
1
,2, x

n
)"Q

k
F(z) (48)

It follows that

<k
x1
"<k

x2
"2"<k

xn
"Q

k
F@(z)"Q

k
f (z), k"1,2,2, n (49)

Considering (47)}(49), equation (45) will become, after manipulation

n
+
i/1

m
i

Q
i

#nrF(z)"z#
2n!1

4
f 2(z)(1!z)2

n
+
i/1

o2
i
Q

i
(50)

If r"0, then m
i
"Q

i
/n (to see this substitute z"1). If we take the derivative of (50) with respect

to z, we obtain

nrf (z)"1#
2n!1

2
[ f (z) f @(z)(1!z)2!f 2(z)(1!z)]

n
+
i/1

o2
i
Q

i
(51)

From terminal conditions we must have,

lim
t?=

f (z)e~rt"0 (52)

By solving (51) and (52) we can obtain f (z) and therefore

uL
k
(z)"1

2
o
k
Q

k
f (z)(1!z) (53)

or in terms of s
k
we obtain

uL
k
(s
1
,2, s

n
)"

1

2
o
k
q
k
f A

1

m

n
+
k/1

s
kBAm!

n
+
k/1

s
kB (54)

The strategy in (54) forms a time-invariant feedback Nash equilibrium strategy since it satis"es
HJB equation. K
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