Кинематика

<u>Задача К.1. Определение скорости и ускорения</u> <u>точки по заданным уравнениям ее движения</u>

По заданным уравнениям движения точки М найти уравнение ее траектории, положение точки для момента времени $t_{\text{o}} = 0$ и t_{1} , вычислить скорость, полное, касательное и нормальное ускорения, радиус кривизны траектории только для t_{1} . Описать характер движения точки.

Необходимые для решения данные приведены в таблице 4.

- <u>Примечание.</u> 1. При выполнении задачи рисунки для скорости и ускорения точки делать отдельно.
 - 2. Для определения траектории точки следует использовать формулы $\sin^2 \alpha + \cos^2 \alpha = 1$; $1 + \cos 2\alpha = 2 \cos^2 \alpha$; $1 \cos 2\alpha = 2 \sin^2 \alpha$.

В кинематике точки будем рассматривать три способа задания движения точки (рис. 67): $\overline{r} = \overline{r}(t)$ - векторный; x = x(t), y = y(t), z = z(t) - координатный; S = S(t) - естественный.

Траектория точки — это след движения точки в пространстве. Чтобы найти уравнение траектории точки, нужно в уравнениях ее движения исключить параметр времени (t).

Например, пусть $x = a \cdot sin(kt)$, $y = a \cdot cos(kt)$, где $\{a, b, k\} = const$. Применяем тригонометрическую формулу $sin^2\alpha + cos^2\alpha = 1$.

Тогда sin(kt) = x/a, cos(kt) = y/b и $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ — точка перемещается по эллипсу.

Прямоугольная декартовая система координат XOYZ, связанная с землей, называется инерциальной системой отсчета (ИСО), а \overline{i} , \overline{j} и \overline{k} - орты этих осей (единичные векторы).

Таблица 4

Номер	Уравнения движения точки						
вари-	x = x(t), M	y = y(t), M	t ₁ , C				
анта 1	$3 - 2t^2$	– 6t	1				
2	2t	$4t^2 - 2t + 1$	0,5				
3	2sin(π·t /3)	4cos(π·t /3)	1				
4	2sin(π·t /6)	$-3\cos(\pi \cdot t/6) + 4$	1				
5	$3t^2 + 2$		0,5				
6	0,5 e ^t	- 4t 3 e ^{-t}	0,5				
7	$-3\cos(\pi \cdot t/4) + 3$	2sin(π·t /4) – 1	1				
8	3 t	$4 - 9t^2$	1				
9	3cos(πt)	sin(πt)	1/3				
10	$\frac{3\cos(\pi t)}{2t^2}$	4t	1				
11	-5/(t+2)	3t + 6	0,5				
12	5t + 5	- 4/(t + 1)	0,5				
13	3t / π	2sin(t + 2)	1				
14	2sin(π⋅t /3)	$4 + 4\cos(\pi \cdot t/3)$	0,5				
15	4t ²	2t ³	1				
16	$2\sin(\pi t) - 2$	2cos(πt)	1/6				
17	$\frac{2\cos(\pi t)}{t^2 - 1}$	3sin(πt)	1/3				
18	$t^2 - 1$	\sqrt{t}	4				
19	2sin(π·t /3)	$-3\cos(\pi \cdot t/3) + 4$	1				
20	– 2sin(π·t /6)	3cos(π·t /6)	1				
21	$2\sqrt{t}$	$4t^2 - 2$	1				
22	$1/2 \cdot (t-3)^2$	\sqrt{t}	1				
23	2sin(πt) – 2	3cos(πt)	1/4				
24	$3\sqrt{t}$	$3\cos(\pi t)$ $4t^2 + 1$	1				
25	$3\sqrt{t}$ $-6\sqrt{t}$ $2e^{3t}$ $4\cos(2\pi t)$ $2e^{2t}$ $4t + 2$	$-2t^2-4$	1				
26	2e ^{3t}	2,4 e ^{-3t}	1/6				
27	4cos(2πt)	4sin(2πt)	1/6				
28	2e ^{2t}	3e ^t	1/4				
29	4t + 2	3/(1 + t)	1				
30	2t ²		1				

Оси τ Мnb, связанные с точкой M, называются естественные оси координат. $M\tau$ - касательная ось, Mn — нормальная ось. Эта ось направлена к центру кривизны траектории. Mb — бинормальная ось. Между осями координат прямой угол и они перемещаются вместе с точкой M, поэтому такая система координат называется неинерциальной. $\overline{\tau}$, \overline{n} и \overline{b} - орты естественных осей координат.

Вектор скорости точки:

$$\overline{V} = \frac{d\overline{r}}{dt} = V_X \cdot \overline{i} + V_y \cdot \overline{j} + V_z \cdot \overline{k} = V_\tau \cdot \overline{\tau};$$

где $\mathbf{v}_{\mathbf{x}} = \dot{\mathbf{x}}$; $\mathbf{v}_{\mathbf{v}} = \dot{\mathbf{y}}$; $\mathbf{v}_{\mathbf{z}} = \dot{\mathbf{z}}$; $\mathbf{v}_{\tau} = \dot{\mathbf{S}}$.

 $V_{\rm X},\,V_{\rm y}$ и $V_{\rm Z}$ – проекции $\overline{V}\,$ на оси координат; $V_{\cal T}\,$ – проекция $\overline{V}\,$ на касательную ось.

Модуль вектора скорости $v = \sqrt{v_x^2 + v_y^2 + v_z^2}$.

Направление вектора \overline{V} :

$$\cos(\overline{v}, \overline{i}) = \frac{v_X}{v}; \quad \cos(\overline{v}, \overline{j}) = \frac{v_y}{v}; \quad \cos(\overline{v}, \overline{k}) = \frac{v_z}{v}.$$

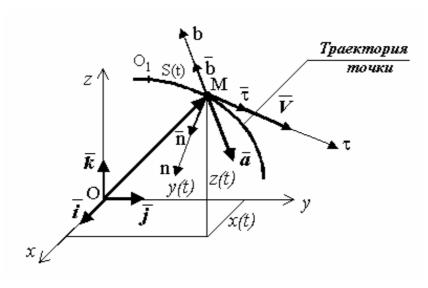


Рис. 67

Вектор \overline{V} в данной точке всегда направлен по касательной к траектории в сторону движения.

Вектор \bar{a} в декартовой системе координат:

$$\overline{a} = \frac{d\overline{v}}{dt} = \frac{d^2\overline{r}}{dt^2} = a_x \cdot \overline{i} + a_y \cdot \overline{j} + a_z \cdot \overline{k};$$

где $a_{x}=\dot{v}_{x}=\ddot{x}$; $a_{y}=\dot{v}_{y}=\ddot{y}$; $a_{z}=\dot{v}_{z}=\ddot{z}$ – проекции вектора \overline{a} на оси координат.

Модуль вектора ускорения

$$a = \sqrt{a_x^2 + a_y^2 + a_z^2}$$
.

Направление вектора \overline{a} : $\cos(\overline{a}, \overline{i}) = \frac{a_x}{a}$; $\cos(\overline{a}, \overline{j}) = \frac{a_y}{a}$;

$$\cos(\overline{a}, \overline{k}) = \frac{a_{\mathbf{z}}}{a}.$$

Вектор ускорения \overline{a} в естественных осях координат:

$$\overline{a} = a_{\tau} \cdot \overline{\tau} + a_{\mathsf{n}} \cdot \overline{\mathsf{n}}$$
;

где
$$a_{\tau} = \frac{dv}{dt} = \frac{v_x a_x + v_y a_y + v_z a_z}{v}$$
 - касательное ускорение;

 $a_n = \frac{{\it v}^2}{
ho}$ - нормальное ускорение; ho - радиус кривизны траектории

в данной точке кривой.

Модуль вектора
$$\overline{a}$$
: $a = \sqrt{a_{\tau}^2 + a_n^2}$.

Если движение точки ускоренное, то $\overline{V}\cdot\overline{a}>0$, если движение замедленное, то $\overline{V}\cdot\overline{a}<0$. Если $|a_{\tau}|=const$, то движение точки равнопеременное. При $|\overline{V}|=const-$ движение точки равномерное.

Пример решения задачи

Исходные данные:
$$x = 2t^2 - 1$$
 (м); $y = \frac{1}{2}t^4 + 1$ (м); $t_1 = 1$ с.

Решение

1)Определяем уравнение траектории точки.

В уравнениях движения исключаем параметр t. Из уравнения x = x(t)

находим
$$t = \sqrt{\frac{x+1}{2}}$$
 и подставляем в уравнение $y = y(t)$. Тогда $y = \frac{1}{8}(x+1)^2 + 1$ — уравнение траектории парабола.

2) Построение графика полученной кривой.

Вычисляем координаты трех точек кривой для моментов времени: $t_0 = 0$; $x_0 = -1$ м; $y_0 = 1$ м; $t_1 = 1$ с; $x_1 = 1$ м; $y_1 = 1,5$ м; $t_2 = 1,5$ с; $x_2 = 3,5$ м; $y_2 = 3,53$ м. В любом выбранном масштабе, например $\mu_1 = 0,1\frac{M}{MM}$, строим график (рис. 68) кривой $y = 1/8(x+1)^2 + 1$.

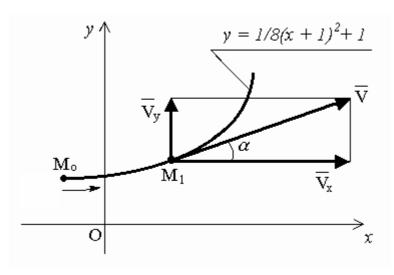


Рис. 68

3)Вычисляем скорости точки.

Проекции скорости на оси координат: $V_X = \dot{X} = 4t$; $V_y = \dot{y} = 2t^3$ $V_X(t_1) = 4.1 = 4$ м/с, $V_V(t_1) = 2.1 = 2$ м/с.

Модуль скорости \overline{V}

$$v = \sqrt{v_x^2 + v_y^2} = 2t\sqrt{4 + t^4}$$
, $v(t_1) = \sqrt{20} = 4.47 \text{m/c}$.

Векторы $\overline{V}_x = V_x \overline{i}$, $\overline{V}_y = V_y \overline{j}$ и \overline{V} показываем в точке M_1 кривой рис. 68 в масштабе $\mu_V = 0, 1 \frac{M}{C \cdot MM}$.

Направление вектора \overline{V} : $\cos \alpha = \frac{v_X}{v} = \frac{4}{4,47} = 0,895$. Угол $\alpha \cong 26,5^\circ$.

4) Вычисление ускорения точки.

Проекции ускорения на оси координат $a_{x} = \dot{v}_{x} = 4$; $a_{y} = \dot{v}_{y} = 6t^{2}$.

$$a_{x}(t_{1}) = 4M/c^{2}; a_{y}(t_{1}) = 6M/c^{2}.$$

Модуль ускорения \bar{a}

$$a = \sqrt{a_x^2 + a_y^2 + a_z^2} = 2\sqrt{4 + 9t^4}$$
; $a(t_1) = \sqrt{52} = 7.21 \text{m/c}^2$.

Направление вектора \overline{a} $\cos \beta = \frac{a_x}{a} = \frac{4}{7,21} = 0,5547$, угол $\beta = 56,31^{\circ}$.

Вычисление касательного ускорения.

$$a_{\tau} = \frac{dv}{dt} = \frac{v_{x}a_{x} + v_{y}a_{y} + v_{z}a_{z}}{v} = \frac{4 \cdot 4 + 2 \cdot 6}{4,47} = 6,26 \,\text{m/c}^{2}.$$

Вычисление нормального ускорения.

Из формулы $a^2 = a^2_{\ n} + a^2_{\ au}$ находим

$$a_n = \sqrt{a^2 - a_\tau^2} = \sqrt{7,21^2 - 6,26^2} = 3,57 \,\text{m/c}^2$$
.

Радиус кривизны траектории в точке М₁.

$$\rho = \frac{v^2}{a_n} = \frac{4,47^2}{3,57} = 5,6 M.$$

Векторы $\overline{a}_{x}=a_{x}\overline{i}$, $\overline{a}_{y}=a_{y}\overline{j}$, \overline{a} , \overline{a}_{τ} , \overline{a}_{n} показываем в точке M_{1} на графике рис. 69 в масштабе $\mu_{a}=0,1\frac{M}{c^{2}\cdot MM}$.

5) Характер движения точки.

Точка М перемещается по плоской траектории $y=1/8(x+1)^2+1$ вправо от точки M_o . Перемещение точки ускоренное, так как $\overline{V}\cdot\overline{a}>0$, или вектор скорости \overline{V} по направлению совпадает с вектором касательного ускорения \overline{a}_{τ} . Скорость точки меняется по за-

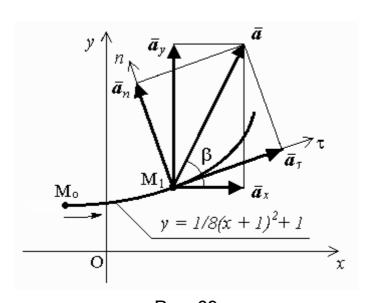


Рис. 69

кону $V=2t\sqrt{4+t^4}$, а ускорение - $a=2\sqrt{4+9t^4}$. Скорость точки в начальный момент времени $t_o=0$, $V_o=0$, а ускорение $a_o=4m/c^2$.

Задача К.2. Вращение твердого тела вокруг неподвижной оси

На рис 71-73 показаны передаточные механизмы. Для некоторых тел заданы уравнения движения: x = x(t) или $\phi = \phi(t)$. Для других тел задаются кинематические параметры: v = v(t) — скорость движения; $\omega = \omega(t)$ — угловая скорость вращения; a, ε — постоянное линейное ускорение или постоянное угловое ускорение.

При начальных условиях (x_0 ; ϕ_0 ; v_0 ; ω_0) = 0 определить скорость и ускорение точки М в конце пройденного пути S телом 1 или точки, лежащей на ободе ведущего колеса.

Необходимые данные для расчета всех вариантов приведены в таблице 5.

1. <u>Вращение твердого тела вокруг</u> неподвижной оси

При вращательном движении (рис. 70) все точки тела (σ) перемещаются по концентрическим окружностям, лежащих в плоскостях, перпендикулярных оси Oz.

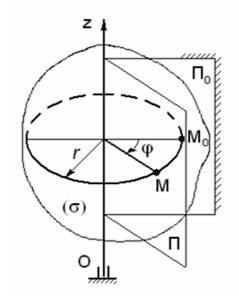


Рис. 70

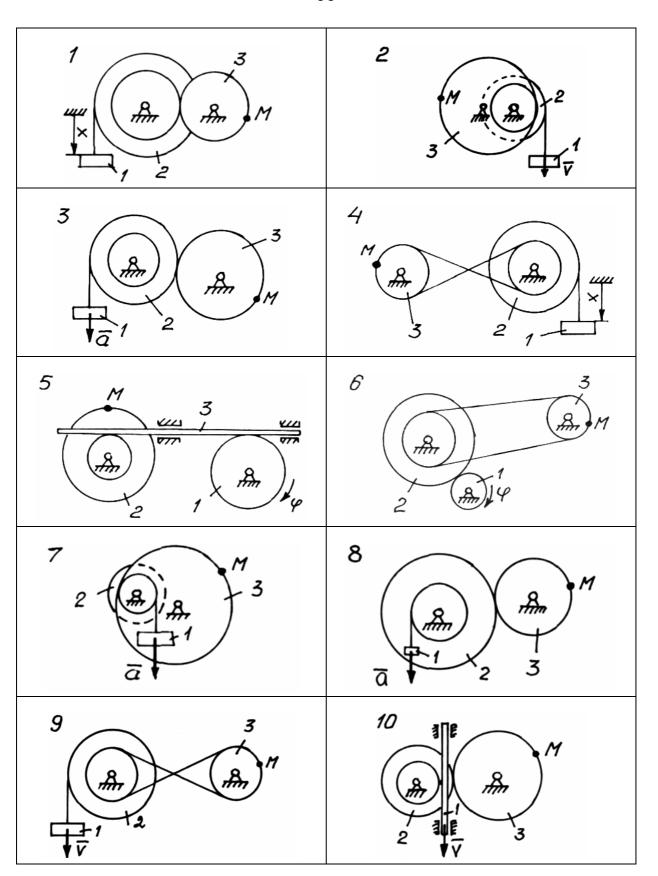


Рис. 71

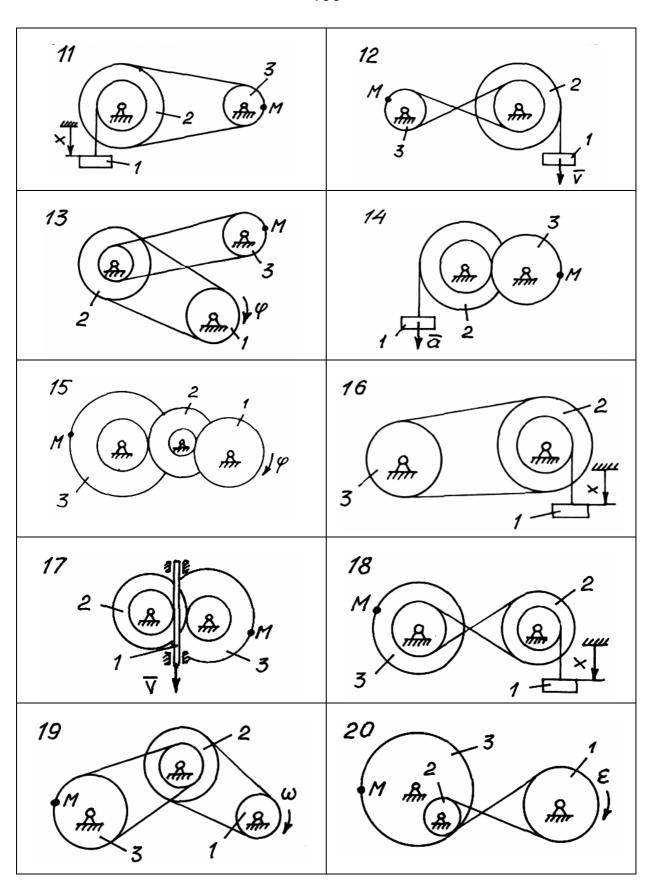


Рис. 72

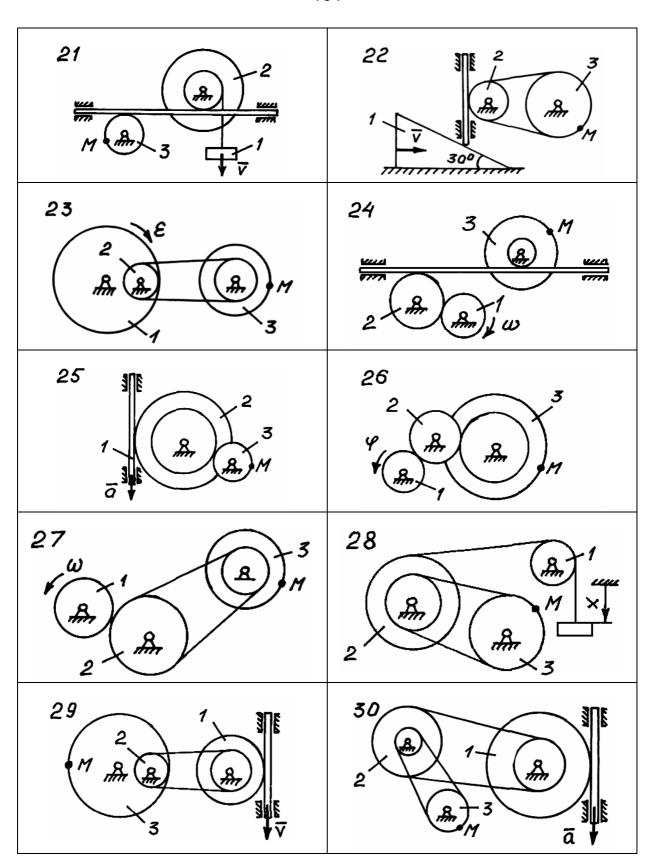


Рис. 73

Таблица 5

Номер										
варианта	r ₁	R₁	r ₂	R_2	r_3	R_3	S	Х, м	V,M/C	a,m/c ²
(рис.71-								φ, рад	ω,c ⁻¹	ε, c ⁻²
73)								फ , फ़ब्स 	00,0	E , C
1	_		0,4	0,2+t ²	_	_				
2	_		0,5	1,2 1,5	0,8		0,4	-	0,4t	_
3	_		0,2	1,2	0,9	_	0,6	_	-	4
4			0,6	1,8	0,5		0,3	0,1+t ²	_	_
5	0,6		0,8	1,4	-	_	0,5	0,8+1,2t ²	_	_
6	0,5		0,0	1,2	0,6		0,8	2,4t ²	_	_
7	0,5		0,4	1,8	2		1,2	2,41	_	3
8	_		0,5	1,5	0,8		0,6	_	_	5
9	_			1,8	0,5		1,4	_		3
10	_		0,6					_	0,6t	_
	_	_	0,8	2,4	0,9		1,0	- C - 1 C+2	1,2t	_
11	_		0,5	1,4	1,2	_	1,2	0,5+1,6t ²	-	_
12	-	_	0,8	1,2	1,4	_	0,8	- 0.012	0,8t	_
13	0,8	_	0,9	1,8	1,2	_	0,6	0,8t ²	_	-
14	_	_	1,2	1,9	1,5	_	0,5	_	-	1,8
15	0,9	_	0,4	1,2	0,8	1,6	0,4	1,2t ²	_	_
16	_	-	0,8	2,2	1,2	-	0,8	0,5+t ²	_	_
17	_	ı	0,5	1,2	0,8	1,8	0,6	_	1,2t	_
18	_	ı	0,4	0,9	0,6	1,2	0,4	0,8+1,2t ²	_	_
19	0,6	-	0,8	1,4	1,8	-	1,2	_	0,8t	_
20	1,2	_	0,4	_	2,4	_	0,5	_	_	2
21	_	_	0,6	2,4	0,8	_	0,8	_	1,5t	_
22	_	-	0,8	_	1,4	-	0,4	_	t	_
23	1,2	-	0,4	-	1,5	2	0,6	_	-	1,6
24	0,4	_	0,8	_	1,2	2	0,8	-	1,2t	_
25	_	_	0,6	2	0,8	_	1,2	-	_	2,5
26	0,8	_	1,4	_	1,2	2	0,4	0,8+1,2t ²	_	_
27	0,5	_	1,5	_	0,8	1,2	0,6	_	0,8t	_
28	0,4	_	0,6	1,2	0,5	_	0,5	2t ²	_	_
29	0,8	1,2	0,5	_	1,6	_	0,8	_	1,4t	_
30	0,4	1,4	0,6	1,2	0,8	_	1,2	_	_	4
L			·	l	·			I.		

Возьмем вертикальную плоскость Π_O , которая будет неподвижной и проходящей через ось Oz. Относительно плоскости Π_O будем рассматривать поворот плоскости Π , связанной с телом (σ) , на угол ϕ . Этот угол ϕ будет изменяться с течением времени.

Тогда $\varphi = \varphi(t)$ – есть уравнение вращения тела (σ) относительно неподвижной оси Oz.

Количество оборотов N и угол поворота тела ϕ в радианах связаны формулой ϕ = 2π N.

Средняя угловая скорость вращения тела определяется отношением приращения угла к бесконечно малому промежутку времени

$$\omega_{cp} = \frac{\Delta \varphi}{\Delta t}$$
.

Мгновенное значение $\omega = \lim_{\Delta t \to 0} \frac{\Delta \varphi}{\Delta t} = \frac{d\varphi}{dt} = \dot{\varphi}$.

Размерность
$$\left[\omega\right] = \left[\frac{\rho a \partial}{c}\right] = \left[c^{-1}\right].$$

Среднее значение углового ускорения вращения тела определяется отношением приращения угловой скорости к бесконечно малому промежутку времени

$$\varepsilon_{\sf cp} = \frac{\Delta \omega}{\Delta t}$$
.

Мгновенное значение $\varepsilon = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt} = \dot{\omega} = \ddot{\varphi}$.

Размерность
$$\left[\varepsilon\right] = \left[\frac{\rho a \partial}{c^2}\right] = \left[c^{-2}\right].$$

Часто в технике угловую скорость вращения тела измеряют в оборотах/минуту, тогда

$$\omega = \frac{2\pi n}{60} = \frac{\pi n}{30},$$

где [n] = [об/мин].

Выведем формулы для вычисления скорости и ускорения любой точки тела при его вращательном движении (рис. 74).

Траекторией точки М будет окружность радиуса *r*. Применяем естественный способ задания движения точки

$$S = S(t)$$
, r.e. $\widehat{M_o M} = S$.

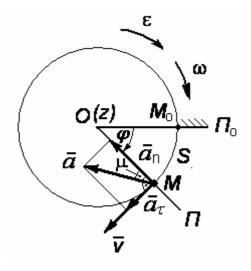


Рис. 74

Скорость точки
$$v = \frac{dS}{dt}$$
, но $S = \varphi \cdot r$.

Тогда
$$V = \frac{d}{dt}(\varphi \cdot r) = r \cdot \frac{d\varphi}{dt} = \omega \cdot r$$
.

$$V = \omega \cdot r$$
 (1)

Вектор скорости \overline{V} всегда будет направлен перпендикулярно радиусу r в сторону вращения, как показывает ω .

Ускорение точки M есть геометрическая сумма двух составляющих — нормального и тангенциального ускорений.

$$\overline{a} = \overline{a}_n + \overline{a}_{\tau}, \quad (\overline{a}_n \perp \overline{a}_{\tau}).$$

Нормальное ускорение

$$a_n = \frac{v^2}{r} = \frac{\omega^2 \cdot r^2}{r} = \omega^2 \cdot r$$
, $a_n = \omega^2 \cdot r$.

Тангенциальное ускорение

$$a_{\tau} = \frac{dv}{dt} = \frac{d}{dt}(\omega \cdot r) = r \frac{d\omega}{dt} = \varepsilon \cdot r, \qquad a_{\tau} = \varepsilon \cdot r.$$

Нормальное ускорение всегда направлено к оси вращения, а тангенциальное – перпендикулярно радиусу окружности.

Тогда
$$a = \sqrt{{a_n}^2 + {a_\tau}^2} = r \cdot \sqrt{\varepsilon^2 + \omega^4}. \tag{2}$$

Угол наклона ускорения \overline{a} к радиусу r определяется по формуле

$$tg\mu = \frac{|a_{\tau}|}{a_{n}} = \frac{|\varepsilon|}{\omega^{2}}.$$
 (3)

Если $\overline{V}\cdot\overline{a}_{\tau}>0$ – вращение тела ускоренное, а если $\overline{V}\cdot\overline{a}_{\tau}<0$ – замедленное.

1.1 Характеристики вращательного движения тела

а) Равномерное вращение

При равномерном вращении $\omega = const$.

Так как
$$\omega = \frac{d\varphi}{dt}$$
, то $d\varphi = \omega \cdot dt$.

$$\int \! d \varphi = \omega \! \int \! dt + C$$
 , $\, \varphi = \omega t + C \,$ – уравнение вращения тела.

б) Равнопеременное вращение

При равнопеременном вращении $\pm \varepsilon = const$.

Можно записать
$$\frac{d\omega}{dt} = \pm \varepsilon$$
, $d\omega = \pm \varepsilon \cdot dt$.

Изменение угловой скорости вращения $\omega = \omega_{o} \pm \varepsilon t$.

Но
$$\omega = \frac{d\varphi}{dt}$$
, тогда $\int d\varphi = \omega_o \int dt \pm \varepsilon \int t \cdot dt + C$, где $C = \varphi_o$.

Окончательно уравнение вращения тела

$$\varphi = \varphi_{o} + \omega_{o}t \pm \frac{\varepsilon t^{2}}{2}.$$

в) Переменное вращение

При переменном вращении $\varepsilon=\varepsilon(t)$. Чтобы найти $\varphi=\varphi(t)$, надо знать ε в зависимости от времени t .

1.2 Векторы угловой скорости и углового ускорения. Формула Эйлера¹

Рассмотрим скорость точки М тела, вращающегося вокруг оси Oz (рис. 75).

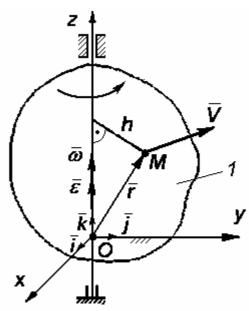


Рис. 75

Воспользуемся прямоугольной системой декартовых осей координат с началом на оси вращения, неизменно связанной с телом 1.

¹ Эйлер Леонард (15.4.1707–18.9.1783). Математик, механик, физик и астроном. Академик Петербургской АН с 1726 г.

Радиус-вектор точки М можно представить в следующем виде

$$\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$$
.

При этом координаты x, y, z и вектор \overline{k} не зависят от времени, а вектора \overline{i} и \overline{j} являются функциями времени, так как они вращаются вместе с телом 1.

Тогда $\overline{v} = \frac{d\overline{r}}{dt} = x \frac{d\overline{i}}{dt} + y \frac{d\overline{j}}{dt}.$

Производные $\frac{d\overline{i}}{dt}$ и $\frac{d\overline{j}}{dt}$ являются скоростями точек на концах

векторов \overline{i} , \overline{j} :

Далее

$$\frac{d\overline{i}}{dt} = \omega \cdot \overline{j}; \qquad \frac{d\overline{j}}{dt} = -\omega \cdot \overline{i}.$$

$$\overline{j} = \overline{k} \times \overline{i}, \qquad -\overline{i} = \overline{k} \times \overline{j},$$

следовательно, $\frac{d\overline{i}}{dt} = \omega \overline{k} \times \overline{i}$; $\frac{d\overline{j}}{dt} = \omega \overline{k} \times \overline{j}$,

где $\omega \, \overline{k} = \overline{\omega}$ - вектор угловой скорости.

Принимая во внимание, что $\overline{k} \times \overline{k} = 0$, получим

$$\overline{\mathbf{v}} = \overline{\omega} \times \overline{r}$$

Модуль скорости $|\overline{v}| = |\overline{\omega}| \cdot |\overline{r}| \cdot \sin(\widehat{\overline{\omega}}, \overline{r}), \quad v = \omega \cdot h.$

Определяя угловое ускорение как вектор, характеризующий быстроту изменения вектора угловой скорости, будем иметь

$$\overline{\varepsilon} = \frac{d\overline{\omega}}{dt}$$
.

Если $\overline{\varepsilon}\cdot\overline{\omega}>0$, то вращение тела 1 ускоренное, а если $\overline{\varepsilon}\cdot\overline{\omega}<0$ – вращение тела замедленное.

1.3 Вектор ускорения точки М

Ускорение точки M, как вектор, определяется геометрической суммой вектора нормального и вектора тангенциального ускорения.

$$\overline{a} = \overline{a}_n + \overline{a}_{\tau}, \qquad (\overline{a}_n \perp \overline{a}_{\tau}).$$

С другой стороны,

$$\overline{a} = \frac{d\overline{v}}{dt} = \frac{d}{dt}(\overline{\omega} \times \overline{r}) = \frac{d\overline{\omega}}{dt} \times \overline{r} + \overline{\omega} \times \frac{d\overline{r}}{dt} = \overline{\varepsilon} \times \overline{r} + \overline{\omega} \times \overline{v}.$$

Следовательно, $\overline{a}_n = \overline{\omega} \times \overline{V}$ и $\overline{a}_{\tau} = \overline{\varepsilon} \times \overline{r}$.

Модули ускорений:

$$|\overline{a}_n| = |\overline{\omega}| \cdot |\overline{v}| \cdot \sin(\widehat{\omega}, \overline{v}); \quad a_n = \omega v = \omega^2 h;$$

 $|\overline{a}_\tau| = |\overline{\varepsilon}| \cdot |\overline{r}| \cdot \sin(\widehat{\varepsilon}, \overline{r}); \quad a_\tau = \varepsilon \cdot h.$

2. Передаточные механизмы

Передаточный механизм осуществляет передачу вращательного движения от ведущего вала (источника энергии) к ведомому валу (органу рабочей машины) при помощи зубчатых колес, фрикционных зацеплений, цепных и ременных передач, винтовых передач и т.д.

На рис. 76 показана передача вращательного движения при помощи двух фрикционных или зубчатых колес, где 1 ведущее колесо, а 2 – ведомое.

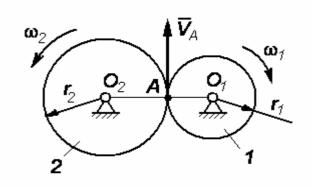


Рис. 76

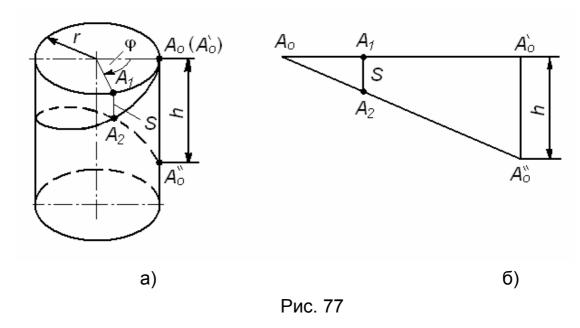
Скорость точки контакта со стороны колеса 1 будет $V_A = \omega_1 \cdot r_1$, а со стороны колеса 2 — $V_A = \omega_2 \cdot r_2$. Тогда $\omega_1 \cdot r_1 = \omega_2 \cdot r_2$, получаем соотношения

$$i = \frac{r_2}{r_1} = \frac{\omega_1}{\omega_2} = \frac{\varepsilon_1}{\varepsilon_2} = \frac{\varphi_1}{\varphi_2},\tag{4}$$

где i – называется передаточным числом.

Большое распространение в технике получила передача «винт – гайка», которая преобразует вращательное движение винта в его поступательное движение. Рассмотрим связь между этими двумя видами движения.

На рис. 77а показана цилиндрическая поверхность, на которой изображена винтовая линия, где h – шаг винта.



Угол поворота винта $0 \le \varphi \le 2\pi$, а образующая $0 \le (A_1A_2 = S) \le h$, где r – радиус цилиндрической поверхности.

Если цилиндрическую поверхность разрезать по винтовой линии и развернуть, то получится прямоугольный треугольник $A_0A_0^{\prime}A_0^{\prime\prime}$

(рис. 77б), в котором
$$\widehat{A_1A_o}=r\cdot \varphi$$
 , $A_oA_1'=2\pi r$, $\widehat{A_1A_o}=A_1A_o$.

Тогда $\Delta A_o A_1 A_2 \sim \Delta A_o A_o' A_o''$, откуда можно записать пропорцию $\frac{S}{h} = \frac{A_o A_1}{A_o A_o'}$.

$$\frac{S}{h} = \frac{r \cdot \varphi}{2\pi r} \qquad \qquad \text{u} \qquad S = \frac{h}{2\pi} \varphi \quad . \tag{5}$$

Поступательное перемещение винта прямо пропорционально углу его поворота.

Формула (5) будет справедлива для скорости V и ускорения a поступательного перемещения винта.

$$V = \frac{h}{2\pi}\omega, \qquad a = \frac{h}{2\pi}\varepsilon. \tag{6}$$

Пример решения задачи

На рис. 78 показан передаточный механизм, который состоит из винтовой пары 1, клина 2, зубчатой рейки 3, двухступенчатого колеса 4 и ременной передачи со шкивами 5 и 6.

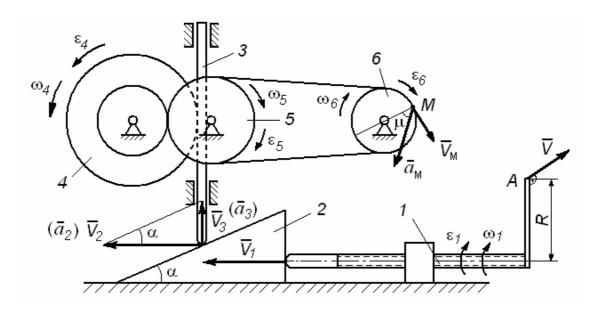


Рис. 78

Заданы следующие параметры: $R = 0.4 \ m$ — длина рукоятки винта; $V = 0.6t \ (m/c)$ — изменение скорости точки A конца рукоятки; $S_A = 1.2 \ m$ — пройденный путь точкой A по дуге окружности радиуса R; $h = 0.04 \ m$ — шаг винта; $\alpha = 70^{\circ}$ — угол наклона плоскости клина 2 к горизонту; $r_4 = 0.6 \ m$; $R_4 = 0.8 \ m$; $r_6 = 0.8 \ m$ — радиусы колес.

На рис. 78 зубчатая рейка 3 находится в зацеплении с двухступенчатым колесом 4.

Определить скорость и ускорение точки M в конце пройденного пути S_A , если $S_A(0) = 0$; $V_A(0) = 0$.

Решение

Определим время τ , за которое точка A пройдет по дуге окружности радиуса R путь S_A .

В естественном способе задания движения точки $v = \frac{dS}{dt} = 0,6t$.

Разделяя переменные, получим $\int dS = 0.6 \int t dt + C_1$.

Окончательно $S = 0,3t^2 + C_1$. При $S_A(0) = 0$, $C_1 = 0$ и $S = 0,3t^2$.

Пройденный путь $S_A = S(\tau) - S(0) = 0.3t^2$.

Тогда
$$au = \sqrt{\frac{S_A}{0.3}} = \sqrt{\frac{1,2}{0.3}} = 2c$$
.

Скорость $V(\tau) = 0.6\tau = 0.6 \cdot 2 = 1.2 M/c$.

Угловая скорость винта $\omega_1 = \frac{v(\tau)}{R} = \frac{1,2}{0.4} = 3c^{-1}$.

По формуле (6) вычисляем поступательную скорость винта, которая будет равна скорости клина 2.

$$v_1 = v_2 = \frac{h}{2\pi} \omega_1 = \frac{0.04}{2\pi} \cdot 3 \cong 0.02 \text{m/c}.$$

В точке контакта клина 2 с рейкой 3 $\frac{v_3}{v_2} = tg\alpha$, откуда $v_3 = v_2 \cdot tg\alpha$.

При
$$\alpha = 70^{\circ}$$
 $v_3 = 0.02 \cdot tg70^{\circ} \cong 0.055 \text{м/c}$.

Скорость V_3 является окружной скоростью для большого колеса 4.

Поэтому
$$V_3=\omega_4 R_4$$
, откуда $\omega_4=rac{V_3}{R_4}=rac{0,055}{0,8}\cong 0,07c^{-1}.$

Запишем пропорцию $\frac{\omega_{5}}{\omega_{4}} = \frac{r_{4}}{r_{5}}$, откуда

$$\omega_5 = \frac{r_4}{r_5}\omega_4 = \frac{0.6}{1.2} \cdot 0.07 = 0.035c^{-1}$$

$$\frac{\omega_6}{\omega_5} = \frac{r_5}{r_6}$$
, $\omega_6 = \frac{r_5}{r_6}\omega_5 = \frac{1,2}{0,8} \cdot 0,035 = 0,053c^{-1}$. $\omega_6 = 0,053c^{-1}$.

Ускорение точки *A* тангенциальное $a_{\tau} = \frac{dv}{dt} = 0,6 M/c^2$;

$$\begin{split} \varepsilon_1 &= \frac{a_\tau}{R} = \frac{0.6}{0.4} = 1.5c^{-2} \,. \\ a_1 &= a_2 = \frac{h}{2\pi} \, \varepsilon_1 = \frac{0.04}{2\pi} \cdot 1.5 \cong 0.01 \text{m/c}^2 \,; \\ a_3 &= a_2 t g \alpha = 0.01 \cdot t g 70^\circ = 0.027 \text{m/c}^2 \,; \\ \varepsilon_4 &= \frac{a_3}{R_4} = \frac{0.027}{0.8} = 0.034 c^{-2} \,; \,\, \varepsilon_5 = \frac{r_4}{r_5} \, \varepsilon_4 = \frac{0.6}{1.2} \, 0.034 = 0.017 c^{-2} \,; \\ \varepsilon_6 &= \frac{r_5}{r_c} \, \varepsilon_5 = \frac{1.2}{0.8} \, 0.017 = 0.026 c^{-2} \,. \end{split}$$

Скорость точки M $V_M = \omega_6 r_6 = 0.053 \cdot 0.8 = 0.042 M/c$.

По формуле (2) вычисляем ускорение точки M:

$$a_M = r_6 \sqrt{\omega_B^4 + \varepsilon_B^2} = 0.6\sqrt{0.053^4 + 0.026^2} = 0.0157 \text{m/c}^2$$

По формуле (3) определяем

$$tg\mu = \frac{\left|\mathcal{E}_{6}\right|}{\omega_{6}^{2}} = \frac{0,026}{0,053} = 0,049, \qquad \mu = 26,1^{\circ}.$$

Ответ: $v_M = 0.042 \text{M/c}$; $a_M = 0.0157 \text{M/c}^2$; $\mu = 26.1^\circ$.

Все эти векторы показаны на рис. 78.